亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a worldwide pandemic, the coronavirus disease-19 (COVID-19) has caused serious restrictions in people's social life, along with the loss of lives, the collapse of economies and the disruption of humanitarian aids. Despite the advance of technological developments, we, as researchers, have witnessed that several issues need further investigation for a better response to a pandemic outbreak. With this motivation, researchers recently started developing ideas to stop or at least reduce the spread of the pandemic. While there have been some prior works on wireless networks for combating a pandemic scenario, vehicular networks and their potential bottlenecks have not yet been fully examined. This article provides an extensive discussion on vehicular networking for combating a pandemic. We provide the major applications of vehicular networking for combating COVID-19 in public transportation, in-vehicle diagnosis, border patrol and social distance monitoring. Next, we identify the unique characteristics of the collected data in terms of privacy, flexibility and coverage, then highlight corresponding future directions in privacy preservation, resource allocation, data caching and data routing. We believe that this work paves the way for the development of new products and algorithms that can facilitate the social life and help controlling the spread of the pandemic.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會議。 Publisher:IFIP。 SIT:

Gender imbalance is a well-known phenomenon observed throughout sciences which is particularly severe in software development and Free/Open Source Software communities. Little is know yet about the geography of this phenomenon in particular when considering large scales for both its time and space dimensions. We contribute to fill this gap with a longitudinal study of the population of contributors to publicly available software source code. We analyze the development history of 160 million software projects for a total of 2.2 billion commits contributed by 43 million distinct authors over a period of 50 years. We classify author names by gender using name frequencies and author geographical locations using heuristics based on email addresses and time zones. We study the evolution over time of contributions to public code by gender and by world region. For the world overall, we confirm previous findings about the low but steadily increasing ratio of contributions by female authors. When breaking down by world regions we find that the long-term growth of female participation is a worldwide phenomenon. We also observe a decrease in the ratio of female participation during the COVID-19 pandemic, suggesting that women's ability to contribute to public code has been more hindered than that of men.

Deep learning has introduced several learning-based methods to recognize breast tumours and presents high applicability in breast cancer diagnostics. It has presented itself as a practical installment in Computer-Aided Diagnostic (CAD) systems to further assist radiologists in diagnostics for different modalities. A deep learning network trained on images provided by hospitals or public databases can perform classification, detection, and segmentation of lesion types. Significant progress has been made in recognizing tumours on 2D images but recognizing 3D images remains a frontier so far. The interconnection of deep learning networks between different fields of study help propels discoveries for more efficient, accurate, and robust networks. In this review paper, the following topics will be explored: (i) theory and application of deep learning, (ii) progress of 2D, 2.5D, and 3D CNN approaches in breast tumour recognition from a performance metric perspective, and (iii) challenges faced in CNN approaches.

The Coronavirus (COVID-19) outbreak in December 2019 has become an ongoing threat to humans worldwide, creating a health crisis that infected millions of lives, as well as devastating the global economy. Deep learning (DL) techniques have proved helpful in analysis and delineation of infectious regions in radiological images in a timely manner. This paper makes an in-depth survey of DL techniques and draws a taxonomy based on diagnostic strategies and learning approaches. DL techniques are systematically categorized into classification, segmentation, and multi-stage approaches for COVID-19 diagnosis at image and region level analysis. Each category includes pre-trained and custom-made Convolutional Neural Network architectures for detecting COVID-19 infection in radiographic imaging modalities; X-Ray, and Computer Tomography (CT). Furthermore, a discussion is made on challenges in developing diagnostic techniques in pandemic, cross-platform interoperability, and examining imaging modality, in addition to reviewing methodologies and performance measures used in these techniques. This survey provides an insight into promising areas of research in DL for analyzing radiographic images and thus, may further accelerate the research in designing of customized DL based diagnostic tools for effectively dealing with new variants of COVID-19 and emerging challenges.

Securing safe driving for connected and autonomous vehicles (CAVs) continues to be a widespread concern, despite various sophisticated functions delivered by artificial intelligence for in-vehicle devices. Diverse malicious network attacks are ubiquitous, along with the worldwide implementation of the Internet of Vehicles, which exposes a range of reliability and privacy threats for managing data in CAV networks. Combined with the fact that the capability of existing CAVs in handling intensive computation tasks is limited, this implies a need for designing an efficient assessment system to guarantee autonomous driving safety without compromising data security. In this article we propose a novel framework, namely Blockchain-enabled intElligent Safe-driving assessmenT (BEST), which offers a smart and reliable approach for conducting safe driving supervision while protecting vehicular information. Specifically, a promising solution that exploits a long short-term memory model is introduced to assess the safety level of the moving CAVs. Then we investigate how a distributed blockchain obtains adequate trustworthiness and robustness for CAV data by adopting a byzantine fault tolerance-based delegated proof-of-stake consensus mechanism. Simulation results demonstrate that our presented BEST gains better data credibility with a higher prediction accuracy for vehicular safety assessment when compared with existing schemes. Finally, we discuss several open challenges that need to be addressed in future CAV networks.

COVID-19, the disease caused by the novel coronavirus (SARS-CoV-2), was first found in Wuhan, China late in the December of 2019. Not long after that the virus spread worldwide and was declared a pandemic by the World Health Organization in March 2020. This caused many changes around the world and in the United States. One of these changes was the shift towards online learning. In this paper, we seek to understand how the COVID-19 pandemic and online learning impact college students' emotional wellbeing. To do this we use several machine learning and statistical models to analyze data collected by the Faculty of Public Administration at the University of Ljubljana, Slovenia in conjunction with an international consortium of universities, other higher education institutions and students' associations. Our results indicate that learning modality (face-to-face, online synchronous, online asynchronous, etc.) is the main predictor of students' emotional wellbeing, followed by financial security. Factors such as satisfaction with their university's and government's handling of the pandemic are also important predictors.

The application and successful utilization of technological resources in developing solutions to health, safety, and economic issues caused by COVID-19 indicate the importance of technology in curbing COVID-19. Also, the medical field has had to race against tie to develop and distribute the COVID-19 vaccine. This endeavour became successful with the vaccines created and approved in less than a year, a feat in medical history. Currently, much work is being done on data collection, where all significant factors impacting the disease are recorded. These factors include confirmed cases, death rates, vaccine rates, hospitalization data, and geographic regions affected by the pandemic. Continued research and use of technological resources are highly recommendable-the paper surveys list of packages, applications and datasets used to analyse COVID-19.

The pandemic caused by SARS-CoV-2 has left an unprecedented impact on health, economy and society worldwide. Emerging strains are making pandemic management increasingly challenging. There is an urge to collect epidemiological, clinical, and physiological data to make an informed decision on mitigation measures. Advances in the Internet of Things (IoT) and edge computing provide solutions for pandemic management through data collection and intelligent computation. While existing data-driven architectures attempt to automate decision-making, they do not capture the multifaceted interaction among computational models, communication infrastructure, and the generated data. In this paper, we perform a survey of the existing approaches for pandemic management, including online data repositories and contact-tracing applications. We then envision a unified pandemic management architecture that leverages the IoT and edge computing to automate recommendations on vaccine distribution, dynamic lockdown, mobility scheduling and pandemic prediction. We elucidate the flow of data among the layers of the architecture, namely, cloud, edge and end device layers. Moreover, we address the privacy implications, threats, regulations, and existing solutions that may be adapted to optimize the utility of health data with security guarantees. The paper ends with a lowdown on the limitations of the architecture and research directions to enhance its practicality.

The novel coronavirus disease (COVID-19) has crushed daily routines and is still rampaging through the world. Existing solution for nonpharmaceutical interventions usually needs to timely and precisely select a subset of residential urban areas for containment or even quarantine, where the spatial distribution of confirmed cases has been considered as a key criterion for the subset selection. While such containment measure has successfully stopped or slowed down the spread of COVID-19 in some countries, it is criticized for being inefficient or ineffective, as the statistics of confirmed cases are usually time-delayed and coarse-grained. To tackle the issues, we propose C-Watcher, a novel data-driven framework that aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city. In terms of design, C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns. Furthermore, to transfer the firsthand knowledge (witted in epicenters) to the target city before local outbreaks, we adopt a novel adversarial encoder framework to learn "city-invariant" representations from the mobility-related features for precise early detection of high-risk neighborhoods, even before any confirmed cases known, in the target city. We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks, where the results demonstrate the efficiency and effectiveness of C-Watcher for early detection of high-risk neighborhoods from a large number of cities.

The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

北京阿比特科技有限公司