亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Feature selection is a crucial step in data mining to enhance model performance by reducing data dimensionality. However, the increasing dimensionality of collected data exacerbates the challenge known as the "curse of dimensionality", where computation grows exponentially with the number of dimensions. To tackle this issue, evolutionary computational (EC) approaches have gained popularity due to their simplicity and applicability. Unfortunately, the diverse designs of EC methods result in varying abilities to handle different data, often underutilizing and not sharing information effectively. In this paper, we propose a novel approach called PSO-based Multi-task Evolutionary Learning (MEL) that leverages multi-task learning to address these challenges. By incorporating information sharing between different feature selection tasks, MEL achieves enhanced learning ability and efficiency. We evaluate the effectiveness of MEL through extensive experiments on 22 high-dimensional datasets. Comparing against 24 EC approaches, our method exhibits strong competitiveness. Additionally, we have open-sourced our code on GitHub at //github.com/wangxb96/MEL.

相關內容

特征選擇( Feature Selection )也稱特征子集選擇( Feature Subset Selection , FSS ),或屬性選擇( Attribute Selection )。是指從已有的M個特征(Feature)中選擇N個特征使得系統的特定指標最優化,是從原始特征中選擇出一些最有效特征以降低數據集維度的過程,是提高學習算法性能的一個重要手段,也是模式識別中關鍵的數據預處理步驟。對于一個學習算法來說,好的學習樣本是訓練模型的關鍵。

We present CrystalBox, a novel, model-agnostic, posthoc explainability framework for Deep Reinforcement Learning (DRL) controllers in the large family of input-driven environments which includes computer systems. We combine the natural decomposability of reward functions in input-driven environments with the explanatory power of decomposed returns. We propose an efficient algorithm to generate future-based explanations across both discrete and continuous control environments. Using applications such as adaptive bitrate streaming and congestion control, we demonstrate CrystalBox's capability to generate high-fidelity explanations. We further illustrate its higher utility across three practical use cases: contrastive explanations, network observability, and guided reward design, as opposed to prior explainability techniques that identify salient features.

Foundation models (FMs) emerge as a promising solution to harness distributed and diverse environmental data by leveraging prior knowledge to understand the complicated temporal and spatial correlations within heterogeneous datasets. Unlike distributed learning frameworks such as federated learning, which often struggle with multimodal data, FMs can transform diverse inputs into embeddings. This process facilitates the integration of information from various modalities and the application of prior learning to new domains. However, deploying FMs in resource-constrained edge systems poses significant challenges. To this end, we introduce CoRAST, a novel learning framework that utilizes FMs for enhanced analysis of distributed, correlated heterogeneous data. Utilizing a server-based FM, CoRAST can exploit existing environment information to extract temporal, spatial, and cross-modal correlations among sensor data. This enables CoRAST to offer context-aware insights for localized client tasks through FM-powered global representation learning. Our evaluation on real-world weather dataset demonstrates CoRAST's ability to exploit correlated heterogeneous data through environmental representation learning to reduce the forecast errors by up to 50.3% compared to the baselines.

The conditional text-to-image diffusion models have garnered significant attention in recent years. However, the precision of these models is often compromised mainly for two reasons, ambiguous condition input and inadequate condition guidance over single denoising loss. To address the challenges, we introduce two innovative solutions. Firstly, we propose a Spatial Guidance Injector (SGI) which enhances conditional detail by encoding text inputs with precise annotation information. This method directly tackles the issue of ambiguous control inputs by providing clear, annotated guidance to the model. Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss (DCL), which applies supervision on the denoised latent code at any given time step. This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output. The combination of SGI and DCL results in our Effective Controllable Network (ECNet), which offers a more accurate controllable end-to-end text-to-image generation framework with a more precise conditioning input and stronger controllable supervision. We validate our approach through extensive experiments on generation under various conditions, such as human body skeletons, facial landmarks, and sketches of general objects. The results consistently demonstrate that our method significantly enhances the controllability and robustness of the generated images, outperforming existing state-of-the-art controllable text-to-image models.

The study of research trends is pivotal for understanding scientific development on specific topics. Traditionally, this involves keyword analysis within scholarly literature, yet comprehensive tools for such analysis are scarce, especially those capable of parsing large datasets with precision. pyKCN, a Python toolkit, addresses this gap by automating keyword cleaning, extraction and trend analysis from extensive academic corpora. It is equipped with modules for text processing, deduplication, extraction, and advanced keyword co-occurrence and analysis, providing a granular view of research trends. This toolkit stands out by enabling researchers to visualize keyword relationships, thereby identifying seminal works and emerging trends. Its application spans diverse domains, enhancing scholars' capacity to understand developments within their fields. The implications of using pyKCN are significant. It offers an empirical basis for predicting research trends, which can inform funding directions, policy-making, and academic curricula. The code source and details can be found on: //github.com/zhenyuanlu/pyKCN

Recent advances in text-to-video generation have demonstrated the utility of powerful diffusion models. Nevertheless, the problem is not trivial when shaping diffusion models to animate static image (i.e., image-to-video generation). The difficulty originates from the aspect that the diffusion process of subsequent animated frames should not only preserve the faithful alignment with the given image but also pursue temporal coherence among adjacent frames. To alleviate this, we present TRIP, a new recipe of image-to-video diffusion paradigm that pivots on image noise prior derived from static image to jointly trigger inter-frame relational reasoning and ease the coherent temporal modeling via temporal residual learning. Technically, the image noise prior is first attained through one-step backward diffusion process based on both static image and noised video latent codes. Next, TRIP executes a residual-like dual-path scheme for noise prediction: 1) a shortcut path that directly takes image noise prior as the reference noise of each frame to amplify the alignment between the first frame and subsequent frames; 2) a residual path that employs 3D-UNet over noised video and static image latent codes to enable inter-frame relational reasoning, thereby easing the learning of the residual noise for each frame. Furthermore, both reference and residual noise of each frame are dynamically merged via attention mechanism for final video generation. Extensive experiments on WebVid-10M, DTDB and MSR-VTT datasets demonstrate the effectiveness of our TRIP for image-to-video generation. Please see our project page at //trip-i2v.github.io/TRIP/.

Recent innovations on text-to-3D generation have featured Score Distillation Sampling (SDS), which enables the zero-shot learning of implicit 3D models (NeRF) by directly distilling prior knowledge from 2D diffusion models. However, current SDS-based models still struggle with intricate text prompts and commonly result in distorted 3D models with unrealistic textures or cross-view inconsistency issues. In this work, we introduce a novel Visual Prompt-guided text-to-3D diffusion model (VP3D) that explicitly unleashes the visual appearance knowledge in 2D visual prompt to boost text-to-3D generation. Instead of solely supervising SDS with text prompt, VP3D first capitalizes on 2D diffusion model to generate a high-quality image from input text, which subsequently acts as visual prompt to strengthen SDS optimization with explicit visual appearance. Meanwhile, we couple the SDS optimization with additional differentiable reward function that encourages rendering images of 3D models to better visually align with 2D visual prompt and semantically match with text prompt. Through extensive experiments, we show that the 2D Visual Prompt in our VP3D significantly eases the learning of visual appearance of 3D models and thus leads to higher visual fidelity with more detailed textures. It is also appealing in view that when replacing the self-generating visual prompt with a given reference image, VP3D is able to trigger a new task of stylized text-to-3D generation. Our project page is available at //vp3d-cvpr24.github.io.

Over the past few years, Text-to-Image (T2I) generation approaches based on diffusion models have gained significant attention. However, vanilla diffusion models often suffer from spelling inaccuracies in the text displayed within the generated images. The capability to generate visual text is crucial, offering both academic interest and a wide range of practical applications. To produce accurate visual text images, state-of-the-art techniques adopt a glyph-controlled image generation approach, consisting of a text layout generator followed by an image generator that is conditioned on the generated text layout. Nevertheless, our study reveals that these models still face three primary challenges, prompting us to develop a testbed to facilitate future research. We introduce a benchmark, LenCom-Eval, specifically designed for testing models' capability in generating images with Lengthy and Complex visual text. Subsequently, we introduce a training-free framework to enhance the two-stage generation approaches. We examine the effectiveness of our approach on both LenCom-Eval and MARIO-Eval benchmarks and demonstrate notable improvements across a range of evaluation metrics, including CLIPScore, OCR precision, recall, F1 score, accuracy, and edit distance scores. For instance, our proposed framework improves the backbone model, TextDiffuser, by more than 23\% and 13.5\% in terms of OCR word F1 on LenCom-Eval and MARIO-Eval, respectively. Our work makes a unique contribution to the field by focusing on generating images with long and rare text sequences, a niche previously unexplored by existing literature

Researchers have proposed to use data of human preference feedback to fine-tune text-to-image generative models. However, the scalability of human feedback collection has been limited by its reliance on manual annotation. Therefore, we develop and test a method to automatically annotate user preferences from their spontaneous facial expression reaction to the generated images. We collect a dataset of Facial Expression Reaction to Generated Images (FERGI) and show that the activations of multiple facial action units (AUs) are highly correlated with user evaluations of the generated images. Specifically, AU4 (brow lowerer) is reflective of negative evaluations of the generated image whereas AU12 (lip corner puller) is reflective of positive evaluations. These can be useful in two ways. Firstly, we can automatically annotate user preferences between image pairs with substantial difference in these AU responses with an accuracy significantly outperforming state-of-the-art scoring models. Secondly, directly integrating the AU responses with the scoring models improves their consistency with human preferences. Finally, this method of automatic annotation with facial expression analysis can be potentially generalized to other generation tasks. The code is available at //github.com/ShuangquanFeng/FERGI, and the dataset is also available at the same link for research purposes.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司