Originally developed in fields such as robotics and autonomous driving with image-based navigation in mind, deep learning-based single-image depth estimation (SIDE) has found great interest in the wider image analysis community. Remote sensing is no exception, as the possibility to estimate height maps from single aerial or satellite imagery bears great potential in the context of topographic reconstruction. A few pioneering investigations have demonstrated the general feasibility of single image height prediction from optical remote sensing images and motivate further studies in that direction. With this paper, we present the first-ever demonstration of deep learning-based single image height prediction for the other important sensor modality in remote sensing: synthetic aperture radar (SAR) data. Besides the adaptation of a convolutional neural network (CNN) architecture for SAR intensity images, we present a workflow for the generation of training data, and extensive experimental results for different SAR imaging modes and test sites. Since we put a particular emphasis on transferability, we are able to confirm that deep learning-based single-image height estimation is not only possible, but also transfers quite well to unseen data, even if acquired by different imaging modes and imaging parameters.
Much progress has been made in the supervised learning of 3D reconstruction of rigid objects from multi-view images or a video. However, it is more challenging to reconstruct severely deformed objects from a single-view RGB image in an unsupervised manner. Although training-based methods, such as specific category-level training, have been shown to successfully reconstruct rigid objects and slightly deformed objects like birds from a single-view image, they cannot effectively handle severely deformed objects and neither can be applied to some downstream tasks in the real world due to the inconsistent semantic meaning of vertices, which are crucial in defining the adopted 3D templates of objects to be reconstructed. In this work, we introduce a template-based method to infer 3D shapes from a single-view image and apply the reconstructed mesh to a downstream task, i.e., absolute length measurement. Without using 3D ground truth, our method faithfully reconstructs 3D meshes and achieves state-of-the-art accuracy in a length measurement task on a severely deformed fish dataset.
X-ray computed tomographic infrastructures are medical imaging modalities that rely on the acquisition of rays crossing examined objects while measuring their intensity decrease. Physical measurements are post-processed by mathematical reconstruction algorithms that may offer weaker or top-notch consistency guarantees on the computed volumetric field. Superior results are provided on the account of an abundance of low-noise measurements being supplied. Nonetheless, such a scanning process would expose the examined body to an undesirably large-intensity and long-lasting ionising radiation, imposing severe health risks. One main objective of the ongoing research is the reduction of the number of projections while keeping the quality performance stable. Due to the under-sampling, the noise occurring inherently because of photon-electron interactions is now supplemented by reconstruction artifacts. Recently, deep learning methods, especially fully convolutional networks have been extensively investigated and proven to be efficient in filtering such deviations. In this report algorithms are presented that take as input a slice of a low-quality reconstruction of the volume in question and aim to map it to the reconstruction that is considered ideal, the ground truth. Above that, the first system comprises two additional elements: firstly, it ensures the consistency with the measured sinogram, secondly it adheres to constraints proposed in classical compressive sampling theory. The second one, inspired by classical ways of solving the inverse problem of reconstruction, takes an iterative approach to regularise the hypothesis in the direction of the correct result.
The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.
Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.
This work focuses on mitigating two limitations in the joint learning of local feature detectors and descriptors. First, the ability to estimate the local shape (scale, orientation, etc.) of feature points is often neglected during dense feature extraction, while the shape-awareness is crucial to acquire stronger geometric invariance. Second, the localization accuracy of detected keypoints is not sufficient to reliably recover camera geometry, which has become the bottleneck in tasks such as 3D reconstruction. In this paper, we present ASLFeat, with three light-weight yet effective modifications to mitigate above issues. First, we resort to deformable convolutional networks to densely estimate and apply local transformation. Second, we take advantage of the inherent feature hierarchy to restore spatial resolution and low-level details for accurate keypoint localization. Finally, we use a peakiness measurement to relate feature responses and derive more indicative detection scores. The effect of each modification is thoroughly studied, and the evaluation is extensively conducted across a variety of practical scenarios. State-of-the-art results are reported that demonstrate the superiority of our methods.
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
We show how to train a fully convolutional neural network to perform inverse rendering from a single, uncontrolled image. The network takes an RGB image as input, regresses albedo and normal maps from which we compute lighting coefficients. Our network is trained using large uncontrolled image collections without ground truth. By incorporating a differentiable renderer, our network can learn from self-supervision. Since the problem is ill-posed we introduce additional supervision: 1. We learn a statistical natural illumination prior, 2. Our key insight is to perform offline multiview stereo (MVS) on images containing rich illumination variation. From the MVS pose and depth maps, we can cross project between overlapping views such that Siamese training can be used to ensure consistent estimation of photometric invariants. MVS depth also provides direct coarse supervision for normal map estimation. We believe this is the first attempt to use MVS supervision for learning inverse rendering.
In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.
Purpose: MR image reconstruction exploits regularization to compensate for missing k-space data. In this work, we propose to learn the probability distribution of MR image patches with neural networks and use this distribution as prior information constraining images during reconstruction, effectively employing it as regularization. Methods: We use variational autoencoders (VAE) to learn the distribution of MR image patches, which models the high-dimensional distribution by a latent parameter model of lower dimensions in a non-linear fashion. The proposed algorithm uses the learned prior in a Maximum-A-Posteriori estimation formulation. We evaluate the proposed reconstruction method with T1 weighted images and also apply our method on images with white matter lesions. Results: Visual evaluation of the samples showed that the VAE algorithm can approximate the distribution of MR patches well. The proposed reconstruction algorithm using the VAE prior produced high quality reconstructions. The algorithm achieved normalized RMSE, CNR and CN values of 2.77\%, 0.43, 0.11; 4.29\%, 0.43, 0.11, 6.36\%, 0.47, 0.11 and 10.00\%, 0.42, 0.10 for undersampling ratios of 2, 3, 4 and 5, respectively, where it outperformed most of the alternative methods. In the experiments on images with white matter lesions, the method faithfully reconstructed the lesions. Conclusion: We introduced a novel method for MR reconstruction, which takes a new perspective on regularization by using priors learned by neural networks. Results suggest the method compares favorably against the other evaluated methods and can reconstruct lesions as well. Keywords: Reconstruction, MRI, prior probability, MAP estimation, machine learning, variational inference, deep learning
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal