We study the problem of list-decodable sparse mean estimation. Specifically, for a parameter $\alpha \in (0, 1/2)$, we are given $m$ points in $\mathbb{R}^n$, $\lfloor \alpha m \rfloor$ of which are i.i.d. samples from a distribution $D$ with unknown $k$-sparse mean $\mu$. No assumptions are made on the remaining points, which form the majority of the dataset. The goal is to return a small list of candidates containing a vector $\widehat \mu$ such that $\| \widehat \mu - \mu \|_2$ is small. Prior work had studied the problem of list-decodable mean estimation in the dense setting. In this work, we develop a novel, conceptually simpler technique for list-decodable mean estimation. As the main application of our approach, we provide the first sample and computationally efficient algorithm for list-decodable sparse mean estimation. In particular, for distributions with ``certifiably bounded'' $t$-th moments in $k$-sparse directions and sufficiently light tails, our algorithm achieves error of $(1/\alpha)^{O(1/t)}$ with sample complexity $m = (k\log(n))^{O(t)}/\alpha$ and running time $\mathrm{poly}(mn^t)$. For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $\Theta (\sqrt{\log(1/\alpha)})$ with quasi-polynomial sample and computational complexity. We complement our upper bounds with nearly-matching statistical query and low-degree polynomial testing lower bounds.
Backward reachability analysis is essential to synthesizing controllers that ensure the correctness of closed-loop systems. This paper is concerned with developing scalable algorithms that under-approximate the backward reachable sets, for discrete-time uncertain linear and nonlinear systems. Our algorithm sequentially linearizes the dynamics, and uses constrained zonotopes for set representation and computation. The main technical ingredient of our algorithm is an efficient way to under-approximate the Minkowski difference between a constrained zonotopic minuend and a zonotopic subtrahend, which consists of all possible values of the uncertainties and the linearization error. This Minkowski difference needs to be represented as a constrained zonotope to enable subsequent computation, but, as we show, it is impossible to find a polynomial-sized representation for it in polynomial time. Our algorithm finds a polynomial-sized under-approximation in polynomial time. We further analyze the conservatism of this under-approximation technique, and show that it is exact under some conditions. Based on the developed Minkowski difference technique, we detail two backward reachable set computation algorithms to control the linearization error and incorporate nonconvex state constraints. Several examples illustrate the effectiveness of our algorithms.
We consider the sparse moment problem of learning a $k$-spike mixture in high dimensional space from its noisy moment information in any dimension. We measure the accuracy of the learned mixtures using transportation distance. Previous algorithms either assume certain separation assumptions, use more recovery moments, or run in (super) exponential time. Our algorithm for the 1-dimension problem (also called the sparse Hausdorff moment problem) is a robust version of the classic Prony's method, and our contribution mainly lies in the analysis. We adopt a global and much tighter analysis than previous work (which analyzes the perturbation of the intermediate results of Prony's method). A useful technical ingredient is a connection between the linear system defined by the Vandermonde matrix and the Schur polynomial, which allows us to provide tight perturbation bound independent of the separation and may be useful in other contexts. To tackle the high dimensional problem, we first solve the 2-dimensional problem by extending the 1-dimension algorithm and analysis to complex numbers. Our algorithm for the high dimensional case determines the coordinates of each spike by aligning a 1-d projection of the mixture to a random vector and a set of 2d-projections of the mixture. Our results have applications to learning topic models and Gaussian mixtures, implying improved sample complexity results or running time over prior work.
Linear perspectivecues deriving from regularities of the built environment can be used to recalibrate both intrinsic and extrinsic camera parameters online, but these estimates can be unreliable due to irregularities in the scene, uncertainties in line segment estimation and background clutter. Here we address this challenge through four initiatives. First, we use the PanoContext panoramic image dataset [27] to curate a novel and realistic dataset of planar projections over a broad range of scenes, focal lengths and camera poses. Second, we use this novel dataset and the YorkUrbanDB [4] to systematically evaluate the linear perspective deviation measures frequently found in the literature and show that the choice of deviation measure and likelihood model has a huge impact on reliability. Third, we use these findings to create a novel system for online camera calibration we call fR, and show that it outperforms the prior state of the art, substantially reducing error in estimated camera rotation and focal length. Our fourth contribution is a novel and efficient approach to estimating uncertainty that can dramatically improve online reliability for performance-critical applications by strategically selecting which frames to use for recalibration.
Constructing a differentially private (DP) estimator requires deriving the maximum influence of an observation, which can be difficult in the absence of exogenous bounds on the input data or the estimator, especially in high dimensional settings. This paper shows that standard notions of statistical depth, i.e., halfspace depth and regression depth, are particularly advantageous in this regard, both in the sense that the maximum influence of a single observation is easy to analyze and that this value is typically low. This is used to motivate new approximate DP location and regression estimators using the maximizers of these two notions of statistical depth. A more computationally efficient variant of the approximate DP regression estimator is also provided. Also, to avoid requiring that users specify a priori bounds on the estimates and/or the observations, variants of these DP mechanisms are described that satisfy random differential privacy (RDP), which is a relaxation of differential privacy provided by Hall, Wasserman, and Rinaldo (2013). We also provide simulations of the two DP regression methods proposed here. The proposed estimators appear to perform favorably relative to the existing DP regression methods we consider in these simulations when either the sample size is at least 100-200 or the privacy-loss budget is sufficiently high.
A separable covariance model for a random matrix provides a parsimonious description of the covariances among the rows and among the columns of the matrix, and permits likelihood-based inference with a very small sample size. However, in many applications the assumption of exact separability is unlikely to be met, and data analysis with a separable model may overlook or misrepresent important dependence patterns in the data. In this article, we propose a compromise between separable and unstructured covariance estimation. We show how the set of covariance matrices may be uniquely parametrized in terms of the set of separable covariance matrices and a complementary set of "core" covariance matrices, where the core of a separable covariance matrix is the identity matrix. This parametrization defines a Kronecker-core decomposition of a covariance matrix. By shrinking the core of the sample covariance matrix with an empirical Bayes procedure, we obtain an estimator that can adapt to the degree of separability of the population covariance matrix.
We consider the problem of estimating a dose-response curve, both globally and locally at a point. Continuous treatments arise often in practice, e.g. in the form of time spent on an operation, distance traveled to a location or dosage of a drug. Letting A denote a continuous treatment variable, the target of inference is the expected outcome if everyone in the population takes treatment level A=a. Under standard assumptions, the dose-response function takes the form of a partial mean. Building upon the recent literature on nonparametric regression with estimated outcomes, we study three different estimators. As a global method, we construct an empirical-risk-minimization-based estimator with an explicit characterization of second-order remainder terms. As a local method, we develop a two-stage, doubly-robust (DR) learner. Finally, we construct a mth-order estimator based on the theory of higher-order influence functions. Under certain conditions, this higher order estimator achieves the fastest rate of convergence that we are aware of for this problem. However, the other two approaches are easier to implement using off-the-shelf software, since they are formulated as two-stage regression tasks. For each estimator, we provide an upper bound on the mean-square error and investigate its finite-sample performance in a simulation. Finally, we describe a flexible, nonparametric method to perform sensitivity analysis to the no-unmeasured-confounding assumption when the treatment is continuous.
We propose a novel inference procedure for linear combinations of high-dimensional regression coefficients in generalized estimating equations, which have been widely used for correlated data analysis for decades. Our estimator, obtained via constructing a system of projected estimating equations, is shown to be asymptotically normally distributed under certain regularity conditions. We also introduce a data-driven cross-validation procedure to select the tuning parameter for estimating the projection direction, which is not addressed in the existing procedures. We demonstrate the robust finite-sample performance, especially in estimation bias and confidence interval coverage, of the proposed method via extensive simulations, and apply the method to gene expression data on riboflavin production with Bacillus subtilis.
This paper studies category-level object pose estimation based on a single monocular image. Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis. The idea is to sequentially update a set of latent variables, e.g., pose, shape, and appearance, of the generative model until the generated image best agrees with the observation. However, convergence and efficiency are two challenges of this inference procedure. In this paper, we take a deeper look at the inference of analysis-by-synthesis from the perspective of visual navigation, and investigate what is a good navigation policy for this specific task. We evaluate three different strategies, including gradient descent, reinforcement learning and imitation learning, via thorough comparisons in terms of convergence, robustness and efficiency. Moreover, we show that a simple hybrid approach leads to an effective and efficient solution. We further compare these strategies to state-of-the-art methods, and demonstrate superior performance on synthetic and real-world datasets leveraging off-the-shelf pose-aware generative models.
Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on $\mathbb{R}^d$ that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.
The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.