亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The FAIR principles for scientific data (Findable, Accessible, Interoperable, Reusable) are also relevant to other digital objects such as research software and scientific workflows that operate on scientific data. The FAIR principles can be applied to the data being handled by a scientific workflow as well as the processes, software, and other infrastructure which are necessary to specify and execute a workflow. The FAIR principles were designed as guidelines, rather than rules, that would allow for differences in standards for different communities and for different degrees of compliance. There are many practical considerations which impact the level of FAIR-ness that can actually be achieved, including policies, traditions, and technologies. Because of these considerations, obstacles are often encountered during the workflow lifecycle that trace directly to shortcomings in the implementation of the FAIR principles. Here, we detail some cases, without naming names, in which data and workflows were Findable but otherwise lacking in areas commonly needed and expected by modern FAIR methods, tools, and users. We describe how some of these problems, all of which were overcome successfully, have motivated us to push on systems and approaches for fully FAIR workflows.

相關內容

Nowadays, interactive technologies are used almost everywhere. As a result, designers need to increasingly make them "socially acceptable". Previous work recommends "subtle" forms of interaction to increase social acceptability and avoid negative experiences. Although often appropriate, such uniform recommendations neglect the variety of social situations. We demonstrate this limitation in an experiment (N=35), by comparing the observer experience of different forms of interaction in "face-to-face conversations", a social situation rarely studied. Here, the typically recommended form of interaction ("subtle") led to a more negative observer experience than the usually deprecated form ("suspenseful"), in terms of affective experience and product perception. It also made the user appear less extraverted. We conclude by positioning interactions with technology not as separate from the social situation in which they are performed, but as a constitutive part of it that meaningfully relates to other situated activities.

To protect the privacy of individuals whose data is being shared, it is of high importance to develop methods allowing researchers and companies to release textual data while providing formal privacy guarantees to its originators. In the field of NLP, substantial efforts have been directed at building mechanisms following the framework of local differential privacy, thereby anonymizing individual text samples before releasing them. In practice, these approaches are often dissatisfying in terms of the quality of their output language due to the strong noise required for local differential privacy. In this paper, we approach the problem at hand using global differential privacy, particularly by training a generative language model in a differentially private manner and consequently sampling data from it. Using natural language prompts and a new prompt-mismatch loss, we are able to create highly accurate and fluent textual datasets taking on specific desired attributes such as sentiment or topic and resembling statistical properties of the training data. We perform thorough experiments indicating that our synthetic datasets do not leak information from our original data and are of high language quality and highly suitable for training models for further analysis on real-world data. Notably, we also demonstrate that training classifiers on private synthetic data outperforms directly training classifiers on real data with DP-SGD.

Machine learning models built on datasets containing discriminative instances attributed to various underlying factors result in biased and unfair outcomes. It's a well founded and intuitive fact that existing bias mitigation strategies often sacrifice accuracy in order to ensure fairness. But when AI engine's prediction is used for decision making which reflects on revenue or operational efficiency such as credit risk modelling, it would be desirable by the business if accuracy can be somehow reasonably preserved. This conflicting requirement of maintaining accuracy and fairness in AI motivates our research. In this paper, we propose a fresh approach for simultaneous improvement of fairness and accuracy of ML models within a realistic paradigm. The essence of our work is a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training and we further show that such instance removal will have no adverse impact on model accuracy. In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes , an inherent bias gets induced in the dataset, which can be identified and mitigated through our novel scheme. Our experimental evaluation on two open-source datasets demonstrates how the proposed method can mitigate bias along with improving rather than degrading accuracy, while offering certain set of control for end user.

Machine learning (ML) algorithms are gaining increased importance in many academic and industrial applications, and such algorithms are, accordingly, becoming common components in computer science curricula. Learning ML is challenging not only due to its complex mathematical and algorithmic aspects, but also due to a) the complexity of using correctly these algorithms in the context of real-life situations and b) the understanding of related social and ethical issues. Cognitive biases are phenomena of the human brain that may cause erroneous perceptions and irrational decision-making processes. As such, they have been researched thoroughly in the context of cognitive psychology and decision making; they do, however, have important implications for computer science education as well. One well-known cognitive bias, first described by Kahneman and Tversky, is the base rate neglect bias, according to which humans fail to consider the base rate of the underlying phenomena when evaluating conditional probabilities. In this paper, we explore the expression of the base rate neglect bias in ML education. Specifically, we show that about one third of students in an Introduction to ML course, from varied backgrounds (computer science students and teachers, data science, engineering, social science and digital humanities), fail to correctly evaluate ML algorithm performance due to the base rate neglect bias. This failure rate should alert educators and promote the development of new pedagogical methods for teaching ML algorithm performance.

Automotive user interfaces constantly change due to increasing automation, novel features, additional applications, and user demands. While in-vehicle interaction can utilize numerous promising modalities, no existing overview includes an extensive set of human sensors and actuators and interaction locations throughout the vehicle interior. We conducted a systematic literature review of 327 publications leading to a design space for in-vehicle interaction that outlines existing and lack of work regarding input and output modalities, locations, and multimodal interaction. To investigate user acceptance of possible modalities and locations inferred from existing work and gaps unveiled in our design space, we conducted an online study (N=48). The study revealed users' general acceptance of novel modalities (e.g., brain or thermal activity) and interaction with locations other than the front (e.g., seat or table). Our work helps practitioners evaluate key design decisions, exploit trends, and explore new areas in the domain of in-vehicle interaction.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司