亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimation and prediction in high dimensional multivariate factor stochastic volatility models is an important and active research area because such models allow a parsimonious representation of multivariate stochastic volatility. Bayesian inference for factor stochastic volatility models is usually done by Markov chain Monte Carlo methods, often by particle Markov chain Monte Carlo, which are usually slow for high dimensional or long time series because of the large number of parameters and latent states involved. Our article makes two contributions. The first is to propose fast and accurate variational Bayes methods to approximate the posterior distribution of the states and parameters in factor stochastic volatility models. The second contribution is to extend this batch methodology to develop fast sequential variational updates for prediction as new observations arrive. The methods are applied to simulated and real datasets and shown to produce good approximate inference and prediction compared to the latest particle Markov chain Monte Carlo approaches, but are much faster.

相關內容

Marginal-likelihood based model-selection, even though promising, is rarely used in deep learning due to estimation difficulties. Instead, most approaches rely on validation data, which may not be readily available. In this work, we present a scalable marginal-likelihood estimation method to select both hyperparameters and network architectures, based on the training data alone. Some hyperparameters can be estimated online during training, simplifying the procedure. Our marginal-likelihood estimate is based on Laplace's method and Gauss-Newton approximations to the Hessian, and it outperforms cross-validation and manual-tuning on standard regression and image classification datasets, especially in terms of calibration and out-of-distribution detection. Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable (e.g., in nonstationary settings).

We analyse an iterative algorithm to minimize quadratic functions whose Hessian matrix $H$ is the expectation of a random symmetric $d\times d$ matrix. The algorithm is a variant of the stochastic variance reduced gradient (SVRG). In several applications, including least-squares regressions, ridge regressions, linear discriminant analysis and regularized linear discriminant analysis, the running time of each iteration is proportional to $d$. Under smoothness and convexity conditions, the algorithm has linear convergence. When applied to quadratic functions, our analysis improves the state-of-the-art performance of SVRG up to a logarithmic factor. Furthermore, for well-conditioned quadratic problems, our analysis improves the state-of-the-art running times of accelerated SVRG, and is better than the known matching lower bound, by a logarithmic factor. Our theoretical results are backed with numerical experiments.

Out-of-distribution (OOD) detection is an important task in machine learning systems for ensuring their reliability and safety. Deep probabilistic generative models facilitate OOD detection by estimating the likelihood of a data sample. However, such models frequently assign a suspiciously high likelihood to a specific outlier. Several recent works have addressed this issue by training a neural network with auxiliary outliers, which are generated by perturbing the input data. In this paper, we discover that these approaches fail for certain OOD datasets. Thus, we suggest a new detection metric that operates without outlier exposure. We observe that our metric is robust to diverse variations of an image compared to the previous outlier-exposing methods. Furthermore, our proposed score requires neither auxiliary models nor additional training. Instead, this paper utilizes the likelihood ratio statistic in a new perspective to extract genuine properties from the given single deep probabilistic generative model. We also apply a novel numerical approximation to enable fast implementation. Finally, we demonstrate comprehensive experiments on various probabilistic generative models and show that our method achieves state-of-the-art performance.

Learning the causal structure that underlies data is a crucial step towards robust real-world decision making. The majority of existing work in causal inference focuses on determining a single directed acyclic graph (DAG) or a Markov equivalence class thereof. However, a crucial aspect to acting intelligently upon the knowledge about causal structure which has been inferred from finite data demands reasoning about its uncertainty. For instance, planning interventions to find out more about the causal mechanisms that govern our data requires quantifying epistemic uncertainty over DAGs. While Bayesian causal inference allows to do so, the posterior over DAGs becomes intractable even for a small number of variables. Aiming to overcome this issue, we propose a form of variational inference over the graphs of Structural Causal Models (SCMs). To this end, we introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs. Its number of parameters does not grow exponentially with the number of variables and can be tractably learned by maximising an Evidence Lower Bound (ELBO). In our experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.

We introduce a methodology for robust Bayesian estimation with robust divergence (e.g., density power divergence or {\gamma}-divergence), indexed by a single tuning parameter. It is well known that the posterior density induced by robust divergence gives highly robust estimators against outliers if the tuning parameter is appropriately and carefully chosen. In a Bayesian framework, one way to find the optimal tuning parameter would be using evidence (marginal likelihood). However, we numerically illustrate that evidence induced by the density power divergence does not work to select the optimal tuning parameter since robust divergence is not regarded as a statistical model. To overcome the problems, we treat the exponential of robust divergence as an unnormalized statistical model, and we estimate the tuning parameter via minimizing the Hyvarinen score. We also provide adaptive computational methods based on sequential Monte Carlo (SMC) samplers, which enables us to obtain the optimal tuning parameter and samples from posterior distributions simultaneously. The empirical performance of the proposed method through simulations and an application to real data are also provided.

We propose a framework for Bayesian Likelihood-Free Inference (LFI) based on Generalized Bayesian Inference using scoring rules (SRs). SRs are used to evaluate probabilistic models given an observation; a proper SR is minimised in expectation when the model corresponds to the data generating process for the observations. Using a strictly proper SR, for which the above minimum is unique, ensures posterior consistency of our method. Further, we prove finite sample posterior consistency and outlier robustness of our posterior for the Kernel and Energy Scores. As the likelihood function is intractable for LFI, we employ consistent estimators of SRs using model simulations in a pseudo-marginal MCMC; we show the target of such chain converges to the exact SR posterior by increasing the number of simulations. Furthermore, we note popular LFI techniques such as Bayesian Synthetic Likelihood (BSL) can be seen as special cases of our framework using only proper (but not strictly so) SR. We empirically validate our consistency and outlier robustness results and show how related approaches do not enjoy these properties. Practically, we use the Energy and Kernel Scores, but our general framework sets the stage for extensions with other scoring rules.

In the vanishing learning rate regime, stochastic gradient descent (SGD) is now relatively well understood. In this work, we propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime. The focus is on deriving exactly solvable results and discussing their implications. The main contributions of this work are to derive the stationary distribution for discrete-time SGD in a quadratic loss function with and without momentum; in particular, one implication of our result is that the fluctuation caused by discrete-time dynamics takes a distorted shape and is dramatically larger than a continuous-time theory could predict. Examples of applications of the proposed theory considered in this work include the approximation error of variants of SGD, the effect of minibatch noise, the optimal Bayesian inference, the escape rate from a sharp minimum, and the stationary covariance of a few second-order methods including damped Newton's method, natural gradient descent, and Adam.

We introduce CaloFlow, a fast detector simulation framework based on normalizing flows. For the first time, we demonstrate that normalizing flows can reproduce many-channel calorimeter showers with extremely high fidelity, providing a fresh alternative to computationally expensive GEANT4 simulations, as well as other state-of-the-art fast simulation frameworks based on GANs and VAEs. Besides the usual histograms of physical features and images of calorimeter showers, we introduce a new metric for judging the quality of generative modeling: the performance of a classifier trained to differentiate real from generated images. We show that GAN-generated images can be identified by the classifier with 100% accuracy, while images generated from CaloFlow are able to fool the classifier much of the time. More broadly, normalizing flows offer several advantages compared to other state-of-the-art approaches (GANs and VAEs), including: tractable likelihoods; stable and convergent training; and principled model selection. Normalizing flows also provide a bijective mapping between data and the latent space, which could have other applications beyond simulation, for example, to detector unfolding.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司