亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a regularization of the Monge-Amp\`ere equation in planar convex domains through uniformly elliptic Hamilton-Jacobi-Bellman equations. The regularized problem possesses a unique strong solution $u_\varepsilon$ and is accessible to the discretization with finite elements. This work establishes locally uniform convergence of $u_\varepsilon$ to the convex Alexandrov solution $u$ to the Monge-Amp\`ere equation as the regularization parameter $\varepsilon$ approaches $0$. A mixed finite element method for the approximation of $u_\varepsilon$ is proposed, and the regularized finite element scheme is shown to be locally uniformly convergent. Numerical experiments provide empirical evidence for the efficient approximation of singular solutions $u$.

相關內容

This paper presents a new parameter free partially penalized immersed finite element method and convergence analysis for solving second order elliptic interface problems. A lifting operator is introduced on interface edges to ensure the coercivity of the method without requiring an ad-hoc stabilization parameter. The optimal approximation capabilities of the immersed finite element space is proved via a novel new approach that is much simpler than that in the literature. A new trace inequality which is necessary to prove the optimal convergence of immersed finite element methods is established on interface elements. Optimal error estimates are derived rigorously with the constant independent of the interface location relative to the mesh. The new method and analysis have also been extended to variable coefficients and three-dimensional problems. Numerical examples are also provided to confirm the theoretical analysis and efficiency of the new method.

In this paper, we present convergence analysis of high-order finite element based methods, in particular, we focus on a discontinuous Galerkin scheme using summation-by-parts operators. To this end, it is crucial that structure preserving properties, such as positivity preservation and entropy inequality hold. We demonstrate how to ensure them and prove the convergence of our multidimensional high-order DG scheme via dissipative weak solutions. In numerical simulations, we verify our theoretical results.

In this paper, we consider a nonlinear beam equation with the p-biharmonic operator, where $1 < p < \infty$. Using a change of variable, we transform the problem into a system of differential equations and prove the existence, uniqueness and regularity of the weak solution by applying the Lax-Milgram theorem and classical results of functional analysis. We investigate the discrete formulation for that system and, with the aid of the Brouwer theorem, we show that the problem has a discrete solution. The uniqueness and stability of the discrete solution are obtained through classical methods. After establishing the order of convergence, we apply the mixed finite element method to obtain an algebraic system of equations. Finally, we implement the computational codes in Matlab software and perform the comparison between theory and simulations.

A short, information-theoretic proof of the Kac--Bernstein theorem, which is stated as follows, is presented: For any independent random variables $X$ and $Y$, if $X+Y$ and $X-Y$ are independent, then $X$ and $Y$ are normally distributed.

This paper considers weak Galerkin finite element approximations for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree $k \ (k\geq 1)$ for the stress approximation, degree $k+1$ for the velocity approximation, and degree $k$ for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.

We consider the Cauchy problem for a second-order nonlinear evolution equation in a Hilbert space. This equation represents the abstract generalization of the Ball integro-differential equation. The general nonlinear case with respect to terms of the equation which include a square of a norm of a gradient is considered. A three-layer semi-discrete scheme is proposed in order to find an approximate solution. In this scheme, the approximation of nonlinear terms that are dependent on the gradient is carried out by using an integral mean. We show that the solution of the nonlinear discrete problem and its corresponding difference analogue of a first-order derivative is uniformly bounded. For the solution of the corresponding linear discrete problem, it is obtained high-order a priori estimates by using two-variable Chebyshev polynomials. Based on these estimates we prove the stability of the nonlinear discrete problem. For smooth solutions, we provide error estimates for the approximate solution. An iteration method is applied in order to find an approximate solution for each temporal step. The convergence of the iteration process is proved.

This paper is concerned with a numerical solution to the scattering of a time-harmonic electromagnetic wave by a bounded and impenetrable obstacle in three dimensions. The electromagnetic wave propagation is modeled by a boundary value problem of Maxwell's equations in the exterior domain of the obstacle. Based on the Dirichlet-to-Neumann (DtN) operator, which is defined by an infinite series, an exact transparent boundary condition is introduced and the scattering problem is reduced equivalently into a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is developed to solve the discrete variational problem, where the DtN operator is truncated into a sum of finitely many terms. The a posteriori error estimate takes into account both the finite element approximation error and the truncation error of the DtN operator. The latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.

In this paper we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

北京阿比特科技有限公司