亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Patankar schemes have attracted increasing interest in recent years because they preserve the positivity of the analytical solution of a production-destruction system (PDS) irrespective of the chosen time step size. Although they are now of great interest, for a long time it was not clear what stability properties such schemes have. Recently a new stability approach based on Lyapunov stability with an extension of the center manifold theorem has been proposed to study the stability properties of positivity-preserving time integrators. In this work, we study the stability properties of the classical modified Patankar--Runge--Kutta schemes (MPRK) and the modified Patankar Deferred Correction (MPDeC) approaches. We prove that most of the considered MPRK schemes are stable for any time step size and compute the stability function of MPDeC. We investigate its properties numerically revealing that also most MPDeC are stable irrespective of the chosen time step size. Finally, we verify our theoretical results with numerical simulations.

相關內容

Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.

Nurmuhammad et al. developed Sinc-Nystr\"{o}m methods for initial value problems in which solutions exhibit exponential decay end behavior. In the methods, the Single-Exponential (SE) transformation or the Double-Exponential (DE) transformation is combined with the Sinc approximation. Hara and Okayama improved those transformations so that a better convergence rate could be attained, which was afterward supported by theoretical error analyses. However, due to a special function included in the basis functions, the methods have a drawback for computation. To address this issue, Okayama and Hara proposed Sinc-collocation methods, which do not include any special function in the basis functions. This study gives error analyses for the methods.

There is an increasing interest in learning reward functions that model human intent and human preferences. However, many frameworks use blackbox learning methods that, while expressive, are difficult to interpret. We propose and evaluate a novel approach for learning expressive and interpretable reward functions from preferences using Differentiable Decision Trees (DDTs). Our experiments across several domains, including Cartpole, Visual Gridworld environments and Atari games, provide evidence that that the tree structure of our learned reward function is useful in determining the extent to which the reward function is aligned with human preferences. We experimentally demonstrate that using reward DDTs results in competitive performance when compared with larger capacity deep neural network reward functions. We also observe that the choice between soft and hard (argmax) output of reward DDT reveals a tension between wanting highly shaped rewards to ensure good RL performance, while also wanting simple, non-shaped rewards to afford interpretability.

This work concerns developing communication- and computation-efficient methods for large-scale multiple testing over networks, which is of interest to many practical applications. We take an asymptotic approach and propose two methods, proportion-matching and greedy aggregation, tailored to distributed settings. The proportion-matching method achieves the global BH performance yet only requires a one-shot communication of the (estimated) proportion of true null hypotheses as well as the number of p-values at each node. By focusing on the asymptotic optimal power, we go beyond the BH procedure by providing an explicit characterization of the asymptotic optimal solution. This leads to the greedy aggregation method that effectively approximates the optimal rejection regions at each node, while computation efficiency comes from the greedy-type approach naturally. Moreover, for both methods, we provide the rate of convergence for both the FDR and power. Extensive numerical results over a variety of challenging settings are provided to support our theoretical findings.

Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.

We consider the problem of recovering conditional independence relationships between $p$ jointly distributed Hilbertian random elements given $n$ realizations thereof. We operate in the sparse high-dimensional regime, where $n \ll p$ and no element is related to more than $d \ll p$ other elements. In this context, we propose an infinite-dimensional generalization of the graphical lasso. We prove model selection consistency under natural assumptions and extend many classical results to infinite dimensions. In particular, we do not require finite truncation or additional structural restrictions. The plug-in nature of our method makes it applicable to any observational regime, whether sparse or dense, and indifferent to serial dependence. Importantly, our method can be understood as naturally arising from a coherent maximum likelihood philosophy.

In many numerical simulations stochastic gradient descent (SGD) type optimization methods perform very effectively in the training of deep neural networks (DNNs) but till this day it remains an open problem of research to provide a mathematical convergence analysis which rigorously explains the success of SGD type optimization methods in the training of DNNs. In this work we study SGD type optimization methods in the training of fully-connected feedforward DNNs with rectified linear unit (ReLU) activation. We first establish general regularity properties for the risk functions and their generalized gradient functions appearing in the training of such DNNs and, thereafter, we investigate the plain vanilla SGD optimization method in the training of such DNNs under the assumption that the target function under consideration is a constant function. Specifically, we prove under the assumption that the learning rates (the step sizes of the SGD optimization method) are sufficiently small but not $L^1$-summable and under the assumption that the target function is a constant function that the expectation of the riskof the considered SGD process converges in the training of such DNNs to zero as the number of SGD steps increases to infinity.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司