We present a novel framework for generating photorealistic 3D human head and subsequently manipulating and reposing them with remarkable flexibility. The proposed approach leverages an implicit function representation of 3D human heads, employing 3D Gaussians anchored on a parametric face model. To enhance representational capabilities and encode spatial information, we embed a lightweight tri-plane payload within each Gaussian rather than directly storing color and opacity. Additionally, we parameterize the Gaussians in a 2D UV space via a 3DMM, enabling effective utilization of the diffusion model for 3D head avatar generation. Our method facilitates the creation of diverse and realistic 3D human heads with fine-grained editing over facial features and expressions. Extensive experiments demonstrate the effectiveness of our method.
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
We introduce Motion-I2V, a novel framework for consistent and controllable image-to-video generation (I2V). In contrast to previous methods that directly learn the complicated image-to-video mapping, Motion-I2V factorizes I2V into two stages with explicit motion modeling. For the first stage, we propose a diffusion-based motion field predictor, which focuses on deducing the trajectories of the reference image's pixels. For the second stage, we propose motion-augmented temporal attention to enhance the limited 1-D temporal attention in video latent diffusion models. This module can effectively propagate reference image's feature to synthesized frames with the guidance of predicted trajectories from the first stage. Compared with existing methods, Motion-I2V can generate more consistent videos even at the presence of large motion and viewpoint variation. By training a sparse trajectory ControlNet for the first stage, Motion-I2V can support users to precisely control motion trajectories and motion regions with sparse trajectory and region annotations. This offers more controllability of the I2V process than solely relying on textual instructions. Additionally, Motion-I2V's second stage naturally supports zero-shot video-to-video translation. Both qualitative and quantitative comparisons demonstrate the advantages of Motion-I2V over prior approaches in consistent and controllable image-to-video generation.
Recent advances in large pretrained text-to-image models have shown unprecedented capabilities for high-quality human-centric generation, however, customizing face identity is still an intractable problem. Existing methods cannot ensure stable identity preservation and flexible editability, even with several images for each subject during training. In this work, we propose StableIdentity, which allows identity-consistent recontextualization with just one face image. More specifically, we employ a face encoder with an identity prior to encode the input face, and then land the face representation into a space with an editable prior, which is constructed from celeb names. By incorporating identity prior and editability prior, the learned identity can be injected anywhere with various contexts. In addition, we design a masked two-phase diffusion loss to boost the pixel-level perception of the input face and maintain the diversity of generation. Extensive experiments demonstrate our method outperforms previous customization methods. In addition, the learned identity can be flexibly combined with the off-the-shelf modules such as ControlNet. Notably, to the best knowledge, we are the first to directly inject the identity learned from a single image into video/3D generation without finetuning. We believe that the proposed StableIdentity is an important step to unify image, video, and 3D customized generation models.
Fine-tuning facilitates the adaptation of text-to-image generative models to novel concepts (e.g., styles and portraits), empowering users to forge creatively customized content. Recent efforts on fine-tuning focus on reducing training data and lightening computation overload but neglect alignment with user intentions, particularly in manual curation of multi-modal training data and intent-oriented evaluation. Informed by a formative study with fine-tuning practitioners for comprehending user intentions, we propose IntentTuner, an interactive framework that intelligently incorporates human intentions throughout each phase of the fine-tuning workflow. IntentTuner enables users to articulate training intentions with imagery exemplars and textual descriptions, automatically converting them into effective data augmentation strategies. Furthermore, IntentTuner introduces novel metrics to measure user intent alignment, allowing intent-aware monitoring and evaluation of model training. Application exemplars and user studies demonstrate that IntentTuner streamlines fine-tuning, reducing cognitive effort and yielding superior models compared to the common baseline tool.
This paper introduces RABBIT, a novel robot-assisted bed bathing system designed to address the growing need for assistive technologies in personal hygiene tasks. It combines multimodal perception and dual (software and hardware) compliance to perform safe and comfortable physical human-robot interaction. Using RGB and thermal imaging to segment dry, soapy, and wet skin regions accurately, RABBIT can effectively execute washing, rinsing, and drying tasks in line with expert caregiving practices. Our system includes custom-designed motion primitives inspired by human caregiving techniques, and a novel compliant end-effector called Scrubby, optimized for gentle and effective interactions. We conducted a user study with 12 participants, including one participant with severe mobility limitations, demonstrating the system's effectiveness and perceived comfort. Supplementary material and videos can be found on our website //emprise.cs.cornell.edu/rabbit.
This study introduces CCNETS (Causal Learning with Causal Cooperative Nets), a novel generative model-based classifier designed to tackle the challenge of generating data for imbalanced datasets in pattern recognition. CCNETS is uniquely crafted to emulate brain-like information processing and comprises three main components: Explainer, Producer, and Reasoner. Each component is designed to mimic specific brain functions, which aids in generating high-quality datasets and enhancing classification performance. The model is particularly focused on addressing the common and significant challenge of handling imbalanced datasets in machine learning. CCNETS's effectiveness is demonstrated through its application to a "fraud dataset," where normal transactions significantly outnumber fraudulent ones (99.83% vs. 0.17%). Traditional methods often struggle with such imbalances, leading to skewed performance metrics. However, CCNETS exhibits superior classification ability, as evidenced by its performance metrics. Specifically, it achieved an F1-score of 0.7992, outperforming traditional models like Autoencoders and Multi-layer Perceptrons (MLP) in the same context. This performance indicates CCNETS's proficiency in more accurately distinguishing between normal and fraudulent patterns. The innovative structure of CCNETS enhances the coherence between generative and classification models, helping to overcome the limitations of pattern recognition that rely solely on generative models. This study emphasizes CCNETS's potential in diverse applications, especially where quality data generation and pattern recognition are key. It proves effective in machine learning, particularly for imbalanced datasets. CCNETS overcomes current challenges in these datasets and advances machine learning with brain-inspired approaches.
As with many machine learning problems, the progress of image generation methods hinges on good evaluation metrics. One of the most popular is the Frechet Inception Distance (FID). FID estimates the distance between a distribution of Inception-v3 features of real images, and those of images generated by the algorithm. We highlight important drawbacks of FID: Inception's poor representation of the rich and varied content generated by modern text-to-image models, incorrect normality assumptions, and poor sample complexity. We call for a reevaluation of FID's use as the primary quality metric for generated images. We empirically demonstrate that FID contradicts human raters, it does not reflect gradual improvement of iterative text-to-image models, it does not capture distortion levels, and that it produces inconsistent results when varying the sample size. We also propose an alternative new metric, CMMD, based on richer CLIP embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel. It is an unbiased estimator that does not make any assumptions on the probability distribution of the embeddings and is sample efficient. Through extensive experiments and analysis, we demonstrate that FID-based evaluations of text-to-image models may be unreliable, and that CMMD offers a more robust and reliable assessment of image quality.
Latest diffusion-based methods for many image restoration tasks outperform traditional models, but they encounter the long-time inference problem. To tackle it, this paper proposes a Wavelet-Based Diffusion Model (WaveDM). WaveDM learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform, which is more time-saving in each step of sampling than modeling in the spatial domain. To ensure restoration performance, a unique training strategy is proposed where the low-frequency and high-frequency spectrums are learned using distinct modules. In addition, an Efficient Conditional Sampling (ECS) strategy is developed from experiments, which reduces the number of total sampling steps to around 5. Evaluations on twelve benchmark datasets including image raindrop removal, rain steaks removal, dehazing, defocus deblurring, demoir\'eing, and denoising demonstrate that WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods and over 100$\times$ faster than existing image restoration methods using vanilla diffusion models.
The advancement of large language models (LLMs) leads to a new era marked by the development of autonomous applications in the real world, which drives innovation in the creation of advanced web-based agents. Existing web agents typically only handle one input modality and are evaluated only in simplified web simulators or static web snapshots, greatly limiting their applicability in real-world scenarios. To bridge this gap, we introduce WebVoyager, an innovative Large Multimodal Model (LMM) powered web agent that can complete user instructions end-to-end by interacting with real-world websites. Moreover, we propose a new evaluation protocol for web agents to address the challenges of automatic evaluation of open-ended web agent tasks, leveraging the robust multimodal comprehension capabilities of GPT-4V. We create a new benchmark by gathering real-world tasks from 15 widely used websites to evaluate our agents. We show that WebVoyager achieves a 55.7% task success rate, significantly surpassing the performance of both GPT-4 (All Tools) and the WebVoyager (text-only) setups, underscoring the exceptional capability of WebVoyager in practical applications. We found that our proposed automatic evaluation achieves 85.3% agreement with human judgment, paving the way for further development of web agents in a real-world setting.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.