亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI explanations are often mentioned as a way to improve human-AI decision-making. Yet, empirical studies have not found consistent evidence of explanations' effectiveness and, on the contrary, suggest that they can increase overreliance when the AI system is wrong. While many factors may affect reliance on AI support, one important factor is how decision-makers reconcile their own intuition -- which may be based on domain knowledge, prior task experience, or pattern recognition -- with the information provided by the AI system to determine when to override AI predictions. We conduct a think-aloud, mixed-methods study with two explanation types (feature- and example-based) for two prediction tasks to explore how decision-makers' intuition affects their use of AI predictions and explanations, and ultimately their choice of when to rely on AI. Our results identify three types of intuition involved in reasoning about AI predictions and explanations: intuition about the task outcome, features, and AI limitations. Building on these, we summarize three observed pathways for decision-makers to apply their own intuition and override AI predictions. We use these pathways to explain why (1) the feature-based explanations we used did not improve participants' decision outcomes and increased their overreliance on AI, and (2) the example-based explanations we used improved decision-makers' performance over feature-based explanations and helped achieve complementary human-AI performance. Overall, our work identifies directions for further development of AI decision-support systems and explanation methods that help decision-makers effectively apply their intuition to achieve appropriate reliance on AI.

相關內容

To what extent can the patient's length of stay in a hospital be predicted using only an X-ray image? We answer this question by comparing the performance of machine learning survival models on a novel multi-modal dataset created from 1235 images with textual radiology reports annotated by humans. Although black-box models predict better on average than interpretable ones, like Cox proportional hazards, they are not inherently understandable. To overcome this trust issue, we introduce time-dependent model explanations into the human-AI decision making process. Explaining models built on both: human-annotated and algorithm-extracted radiomics features provides valuable insights for physicians working in a hospital. We believe the presented approach to be general and widely applicable to other time-to-event medical use cases. For reproducibility, we open-source code and the TLOS dataset at //github.com/mi2datalab/xlungs-trustworthy-los-prediction.

With the rise of AI and data mining techniques, group profiling and group-level analysis have been increasingly used in many domains including policy making and direct marketing. In some cases, the statistics extracted from data may provide insights to a group's shared characteristics; in others, the group-level analysis can lead to problems including stereotyping and systematic oppression. How can analytic tools facilitate a more conscientious process in group analysis? In this work, we identify a set of accountable group analytics design guidelines to explicate the needs for group differentiation and preventing overgeneralization of a group. Following the design guidelines, we develop TribalGram, a visual analytic suite that leverages interpretable machine learning algorithms and visualization to offer inference assessment, model explanation, data corroboration, and sense-making. Through the interviews with domain experts, we showcase how our design and tools can bring a richer understanding of "groups" mined from the data.

The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models can become inaccurate and need adjustment. While there do exist methods to detect concept drift or to adjust models in the presence of observed drift, the question of explaining drift, i.e., describing the potentially complex and high dimensional change of distribution in a human-understandable fashion, has hardly been considered so far. This problem is of importance since it enables an inspection of the most prominent characteristics of how and where drift manifests itself. Hence, it enables human understanding of the change and it increases acceptance of life-long learning models. In this paper, we present a novel technology characterizing concept drift in terms of the characteristic change of spatial features based on various explanation techniques. To do so, we propose a methodology to reduce the explanation of concept drift to an explanation of models that are trained in a suitable way extracting relevant information regarding the drift. This way a large variety of explanation schemes is available. Thus, a suitable method can be selected for the problem of drift explanation at hand. We outline the potential of this approach and demonstrate its usefulness in several examples.

Counterfactual explanations are an increasingly popular form of post hoc explanation due to their (i) applicability across problem domains, (ii) proposed legal compliance (e.g., with GDPR), and (iii) reliance on the contrastive nature of human explanation. Although counterfactual explanations are normally used to explain individual predictive-instances, we explore a novel use case in which groups of similar instances are explained in a collective fashion using ``group counterfactuals'' (e.g., to highlight a repeating pattern of illness in a group of patients). These group counterfactuals meet a human preference for coherent, broad explanations covering multiple events/instances. A novel, group-counterfactual algorithm is proposed to generate high-coverage explanations that are faithful to the to-be-explained model. This explanation strategy is also evaluated in a large, controlled user study (N=207), using objective (i.e., accuracy) and subjective (i.e., confidence, explanation satisfaction, and trust) psychological measures. The results show that group counterfactuals elicit modest but definite improvements in people's understanding of an AI system. The implications of these findings for counterfactual methods and for XAI are discussed.

Recent work has proposed artificial intelligence (AI) models that can learn to decide whether to make a prediction for an instance of a task or to delegate it to a human by considering both parties' capabilities. In simulations with synthetically generated or context-independent human predictions, delegation can help improve the performance of human-AI teams -- compared to humans or the AI model completing the task alone. However, so far, it remains unclear how humans perform and how they perceive the task when they are aware that an AI model delegated task instances to them. In an experimental study with 196 participants, we show that task performance and task satisfaction improve through AI delegation, regardless of whether humans are aware of the delegation. Additionally, we identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements in performance and satisfaction. Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration in workplaces.

The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.

While game theory has been transformative for decision-making, the assumptions made can be overly restrictive in certain instances. In this work, we investigate some of the underlying assumptions of rationality, such as mutual consistency and best response, and consider ways to relax these assumptions using concepts from level-$k$ reasoning and quantal response equilibrium (QRE) respectively. Specifically, we propose an information-theoretic two-parameter model called the Quantal Hierarchy model, which can relax both mutual consistency and best response while still approximating level-$k$, QRE, or typical Nash equilibrium behaviour in the limiting cases. The model is based on a recursive form of the variational free energy principle, representing higher-order reasoning as (pseudo) sequential decision-making in extensive-form game tree. This representation enables us to treat simultaneous games in a similar manner to sequential games, where reasoning resources deplete throughout the game-tree. Bounds in player processing abilities are captured as information costs, where future branches of reasoning are discounted, implying a hierarchy of players where lower-level players have fewer processing resources. We demonstrate the effectiveness of the Quantal Hierarchy model in several canonical economic games, {both simultaneous and sequential}, using out-of-sample modelling.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司