亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Isocontouring is one of the most widely used visualization techniques. However, many popular contouring algorithms were created prior to the advent of ubiquitous parallel approaches, such as multi-core, shared memory computing systems. With increasing data sizes and computational loads, it is essential to reimagine such algorithms to leverage the increased computing capabilities available today. To this end we have redesigned the SurfaceNets algorithm, a powerful technique which is often employed to isocontour non-continuous, discrete, volumetric scalar fields such as segmentation label maps. Label maps are ubiquitous to medical computing and biological analysis, used in applications ranging from anatomical atlas creation to brain connectomics. This novel Parallel SurfaceNets algorithm has been redesigned using concepts from the high-performance Flying Edges continuous isocontouring algorrithm. It consists of two basic steps, surface extraction followed by constrained smoothing, parallelized over volume edges and employing a double-buffering smoothing approach to guarantee determinism. The algorithm can extract and smooth multiple segmented objects in a single execution, producing a polygonal (triangular/quadrilateral) mesh with points and polygons fully shared between neighboring objects. Performance is typically one to two orders of magnitude faster than the current sequential algorithms for discrete isosurface extraction on small core-count commodity CPU hardware. We demonstrate the effectiveness of the algorithm on five different datasets including human torso and brain atlases, mouse brain segmentation, and electron microscopy connectomics. The software is currently available under a permissive, open source license in the VTK visualization system.

相關內容

With the rapid advancement of UAV technology, the problem of UAV coalition formation has become a hotspot. Therefore, designing task-driven multi-UAV coalition formation mechanism has become a challenging problem. However, existing coalition formation mechanisms suffer from low relevance between UAVs and task requirements, resulting in overall low coalition utility and unstable coalition structures. To address these problems, this paper proposed a novel multi-UAV coalition network collaborative task completion model, considering both coalition work capacity and task-requirement relationships. This model stimulated the formation of coalitions that match task requirements by using a revenue function based on the coalition's revenue threshold. Subsequently, an algorithm for coalition formation based on marginal utility was proposed. Specifically, the algorithm utilized Shapley value to achieve fair utility distribution within the coalition, evaluated coalition values based on marginal utility preference order, and achieved stable coalition partition through a limited number of iterations. Additionally, we theoretically proved that this algorithm has Nash equilibrium solution. Finally, experimental results demonstrated that the proposed algorithm, compared to currently classical algorithms, not only forms more stable coalitions but also further enhances the overall utility of coalitions effectively.

We introduce the Approximated Optimal Transport (AOT) technique, a novel training scheme for diffusion-based generative models. Our approach aims to approximate and integrate optimal transport into the training process, significantly enhancing the ability of diffusion models to estimate the denoiser outputs accurately. This improvement leads to ODE trajectories of diffusion models with lower curvature and reduced truncation errors during sampling. We achieve superior image quality and reduced sampling steps by employing AOT in training. Specifically, we achieve FID scores of 1.88 with just 27 NFEs and 1.73 with 29 NFEs in unconditional and conditional generations, respectively. Furthermore, when applying AOT to train the discriminator for guidance, we establish new state-of-the-art FID scores of 1.68 and 1.58 for unconditional and conditional generations, respectively, each with 29 NFEs. This outcome demonstrates the effectiveness of AOT in enhancing the performance of diffusion models.

Multimodal intention understanding (MIU) is an indispensable component of human expression analysis (e.g., sentiment or humor) from heterogeneous modalities, including visual postures, linguistic contents, and acoustic behaviors. Existing works invariably focus on designing sophisticated structures or fusion strategies to achieve impressive improvements. Unfortunately, they all suffer from the subject variation problem due to data distribution discrepancies among subjects. Concretely, MIU models are easily misled by distinct subjects with different expression customs and characteristics in the training data to learn subject-specific spurious correlations, significantly limiting performance and generalizability across uninitiated subjects.Motivated by this observation, we introduce a recapitulative causal graph to formulate the MIU procedure and analyze the confounding effect of subjects. Then, we propose SuCI, a simple yet effective causal intervention module to disentangle the impact of subjects acting as unobserved confounders and achieve model training via true causal effects. As a plug-and-play component, SuCI can be widely applied to most methods that seek unbiased predictions. Comprehensive experiments on several MIU benchmarks clearly demonstrate the effectiveness of the proposed module.

Adaptations of Transformer models, such as BERT4Rec and SASRec, achieve state-of-the-art performance in the sequential recommendation task according to accuracy-based metrics, such as NDCG. These models treat items as tokens and then utilise a score-and-rank approach (Top-K strategy), where the model first computes item scores and then ranks them according to this score. While this approach works well for accuracy-based metrics, it is hard to use it for optimising more complex beyond-accuracy metrics such as diversity. Recently, the GPTRec model, which uses a different Next-K strategy, has been proposed as an alternative to the Top-K models. In contrast with traditional Top-K recommendations, Next-K generates recommendations item-by-item and, therefore, can account for complex item-to-item interdependencies important for the beyond-accuracy measures. However, the original GPTRec paper focused only on accuracy in experiments and needed to address how to optimise the model for complex beyond-accuracy metrics. Indeed, training GPTRec for beyond-accuracy goals is challenging because the interaction training data available for training recommender systems typically needs to be aligned with beyond-accuracy recommendation goals. To solve the misalignment problem, we train GPTRec using a 2-stage approach: in the first stage, we use a teacher-student approach to train GPTRec, mimicking the behaviour of traditional Top-K models; in the second stage, we use Reinforcement Learning to align the model for beyond-accuracy goals. In particular, we experiment with increasing recommendation diversity and reducing popularity bias. Our experiments on two datasets show that in 3 out of 4 cases, GPTRec's Next-K generation approach offers a better tradeoff between accuracy and secondary metrics than classic greedy re-ranking techniques.

We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers. Specifically, the algorithm observes a \emph{corrupted} set of samples from $\mathcal{N}(\mu,\mathbf{I}_d)$, where the unknown mean $\mu \in \mathbb{R}^d$ is constrained to be $k$-sparse. A series of prior works has developed efficient algorithms for robust sparse mean estimation with sample complexity $\mathrm{poly}(k,\log d, 1/\epsilon)$ and runtime $d^2 \mathrm{poly}(k,\log d,1/\epsilon)$, where $\epsilon$ is the fraction of contamination. In particular, the fastest runtime of existing algorithms is quadratic ($\Omega(d^2)$), which can be prohibitive in high dimensions. This quadratic barrier in the runtime stems from the reliance of these algorithms on the sample covariance matrix, which is of size $d^2$. Our main contribution is an algorithm for robust sparse mean estimation which runs in \emph{subquadratic} time using $\mathrm{poly}(k,\log d,1/\epsilon)$ samples. We also provide analogous results for robust sparse PCA. Our results build on algorithmic advances in detecting weak correlations, a generalized version of the light-bulb problem by Valiant.

Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.

Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.

While convolutional neural networks (CNNs) have achieved success in computer vision tasks, it is vulnerable to backdoor attacks. Such attacks could mislead the victim model to make attacker-chosen prediction with a specific trigger pattern. Until now, the trigger injection of existing attacks is mainly limited to spatial domain. Recent works take advantage of perceptual properties of planting specific patterns in the frequency domain, which only reflect indistinguishable pixel-wise perturbations in pixel domain. However, in the black-box setup, the inaccessibility of training process often renders more complex trigger designs. Existing frequency attacks simply handcraft the magnitude of spectrum, introducing anomaly frequency disparities between clean and poisoned data and taking risks of being removed by image processing operations (such as lossy compression and filtering). In this paper, we propose a robust low-frequency black-box backdoor attack (LFBA), which minimally perturbs low-frequency components of frequency spectrum and maintains the perceptual similarity in spatial space simultaneously. The key insight of our attack restrict the search for the optimal trigger to low-frequency region that can achieve high attack effectiveness, robustness against image transformation defenses and stealthiness in dual space. We utilize simulated annealing (SA), a form of evolutionary algorithm, to optimize the properties of frequency trigger including the number of manipulated frequency bands and the perturbation of each frequency component, without relying on the knowledge from the victim classifier. Extensive experiments on real-world datasets verify the effectiveness and robustness of LFBA against image processing operations and the state-of-the-art backdoor defenses, as well as its inherent stealthiness in both spatial and frequency space, making it resilient against frequency inspection.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司