This work introduces a novel framework for precisely and efficiently estimating rare event probabilities in complex, high-dimensional non-Gaussian spaces, building on our foundational Approximate Sampling Target with Post-processing Adjustment (ASTPA) approach. An unnormalized sampling target is first constructed and sampled, relaxing the optimal importance sampling distribution and appropriately designed for non-Gaussian spaces. Post-sampling, its normalizing constant is estimated using a stable inverse importance sampling procedure, employing an importance sampling density based on the already available samples. The sought probability is then computed based on the estimates evaluated in these two stages. The proposed estimator is theoretically analyzed, proving its unbiasedness and deriving its analytical coefficient of variation. To sample the constructed target, we resort to our developed Quasi-Newton mass preconditioned Hamiltonian MCMC (QNp-HMCMC) and we prove that it converges to the correct stationary target distribution. To avoid the challenging task of tuning the trajectory length in complex spaces, QNp-HMCMC is effectively utilized in this work with a single-step integration. We thus show the equivalence of QNp-HMCMC with single-step implementation to a unique and efficient preconditioned Metropolis-adjusted Langevin algorithm (MALA). An optimization approach is also leveraged to initiate QNp-HMCMC effectively, and the implementation of the developed framework in bounded spaces is eventually discussed. A series of diverse problems involving high dimensionality (several hundred inputs), strong nonlinearity, and non-Gaussianity is presented, showcasing the capabilities and efficiency of the suggested framework and demonstrating its advantages compared to relevant state-of-the-art sampling methods.
Feature upsampling is a fundamental and indispensable ingredient of almost all current network structures for image segmentation tasks. Recently, a popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance to help upsample the low-resolution deep feature based on their local similarity. Albeit achieving promising performance, this pipeline has specific limitations: 1) HR query and LR key features are not well aligned; 2) the similarity between query-key features is computed based on the fixed inner product form; 3) neighbor selection is coarsely operated on LR features, resulting in mosaic artifacts. These shortcomings make the existing methods along this pipeline primarily applicable to hierarchical network architectures with iterative features as guidance and they are not readily extended to a broader range of structures, especially for a direct high-ratio upsampling. Against the issues, we meticulously optimize every methodological design. Specifically, we firstly propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives, and then construct a parameterized paired central difference convolution block for flexibly calculating the similarity between the well-aligned query-key features. Besides, we develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts. Based on these careful designs, we systematically construct a refreshed similarity-based feature upsampling framework named ReSFU. Extensive experiments substantiate that our proposed ReSFU is finely applicable to various types of architectures in a direct high-ratio upsampling manner, and consistently achieves satisfactory performance on different segmentation applications, showing superior generality and ease of deployment.
We introduce SiamTST, a novel representation learning framework for multivariate time series. SiamTST integrates a Siamese network with attention, channel-independent patching, and normalization techniques to achieve superior performance. Evaluated on a real-world industrial telecommunication dataset, SiamTST demonstrates significant improvements in forecasting accuracy over existing methods. Notably, a simple linear network also shows competitive performance, achieving the second-best results, just behind SiamTST. The code is available at //github.com/simenkristoff/SiamTST.
Learning representative, robust and discriminative information from images is essential for effective person re-identification (Re-Id). In this paper, we propose a compound approach for end-to-end discriminative deep feature learning for person Re-Id based on both body and hand images. We carefully design the Local-Aware Global Attention Network (LAGA-Net), a multi-branch deep network architecture consisting of one branch for spatial attention, one branch for channel attention, one branch for global feature representations and another branch for local feature representations. The attention branches focus on the relevant features of the image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. The global branch intends to preserve the global context or structural information. For the the local branch, which intends to capture the fine-grained information, we perform uniform partitioning to generate stripes on the conv-layer horizontally. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. A set of ablation study shows that each component contributes to the increased performance of the LAGA-Net. Extensive evaluations on four popular body-based person Re-Id benchmarks and two publicly available hand datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.
This paper proposes a novel quaternion-based approach for tracking the translation (position and linear velocity) and rotation (attitude and angular velocity) trajectories of underactuated Unmanned Aerial Vehicles (UAVs). Quadrotor UAVs are challenging regarding accuracy, singularity, and uncertainties issues. Controllers designed based on unit-quaternion are singularity-free for attitude representation compared to other methods (e.g., Euler angles), which fail to represent the vehicle's attitude at multiple orientations. Quaternion-based Adaptive Backstepping Control (ABC) and Adaptive Fast Terminal Sliding Mode Control (AFTSMC) are proposed to address a set of challenging problems. A quaternion-based ABC, a superior recursive approach, is proposed to generate the necessary thrust handling unknown uncertainties and UAV translation trajectory tracking. Next, a quaternion-based AFTSMC is developed to overcome parametric uncertainties, avoid singularity, and ensure fast convergence in a finite time. Moreover, the proposed AFTSMC is able to significantly minimize control signal chattering, which is the main reason for actuator failure and provide smooth and accurate rotational control input. To ensure the robustness of the proposed approach, the designed control algorithms have been validated considering unknown time-variant parametric uncertainties and significant initialization errors. The proposed techniques has been compared to state-of-the-art control technique. Keywords: Adaptive Backstepping Control (ABC), Adaptive Fast Terminal Sliding Mode Control (AFTSMC), Unit-quaternion, Unmanned Aerial Vehicles, Singularity Free, Pose Control
This paper addresses the problem of providing a novel approach to sourcing significant training data for LLMs focused on science and engineering. In particular, a crucial challenge is sourcing parallel scientific codes in the ranges of millions to billions of codes. To tackle this problem, we propose an automated pipeline framework, called LASSI, designed to translate between parallel programming languages by bootstrapping existing closed- or open-source LLMs. LASSI incorporates autonomous enhancement through self-correcting loops where errors encountered during compilation and execution of generated code are fed back to the LLM through guided prompting for debugging and refactoring. We highlight the bi-directional translation of existing GPU benchmarks between OpenMP target offload and CUDA to validate LASSI. The results of evaluating LASSI with different application codes across four LLMs demonstrate the effectiveness of LASSI for generating executable parallel codes, with 80% of OpenMP to CUDA translations and 85% of CUDA to OpenMP translations producing the expected output. We also observe approximately 78% of OpenMP to CUDA translations and 62% of CUDA to OpenMP translations execute within 10% of or at a faster runtime than the original benchmark code in the same language.
The average hazard (AH), recently introduced by Uno and Horiguchi, represents a novel summary metric of event time distributions, conceptualized as the general censoring-free average person-time incidence rate on a given time window, $[0,\tau].$ This metric is calculated as the ratio of the cumulative incidence probability at $\tau$ to the restricted mean survival time at $\tau$ and can be estimated through non-parametric methods. The AH's difference and ratio present viable alternatives to the traditional Cox's hazard ratio for quantifying the treatment effect on time-to-event outcomes in comparative clinical studies. While the methodology for evaluating the difference and ratio of AH in randomized clinical trials has been previously proposed, the application of the AH-based approach in general comparative effectiveness research (CER), where interventions are not randomly allocated, remains underdiscussed. This paper aims to introduce several approaches for applying the AH in general CER, thereby extending its utility beyond randomized trial settings to observational studies where treatment assignment is non-random.
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.
Recent advances in large language models (LLMs) for code applications have demonstrated remarkable zero-shot fluency and instruction following on challenging code related tasks ranging from test case generation to self-repair. Unsurprisingly, however, models struggle to compose syntactically valid programs in programming languages unrepresented in pre-training, referred to as very low-resource Programming Languages (VLPLs). VLPLs appear in crucial settings, including domain-specific languages for internal tools and tool-chains for legacy languages. Inspired by an HCI technique called natural program elicitation, we propose designing an intermediate language that LLMs ``naturally'' know how to use and which can be automatically compiled to a target VLPL. When LLMs generate code that lies outside of this intermediate language, we use compiler techniques to repair the code into programs in the intermediate language. Overall, we introduce \emph{synthetic programming elicitation and compilation} (SPEAC), an approach that enables LLMs to generate syntactically valid code even for VLPLs. We empirically evaluate the performance of SPEAC in a case study and find that, compared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically correct programs significantly more frequently without sacrificing semantic correctness.
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution (SR). Specifically, by employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model, thereby preserving the generative prior and minimizing training cost. To remedy the loss of fidelity caused by the inherent stochasticity of diffusion models, we employ a controllable feature wrapping module that allows users to balance quality and fidelity by simply adjusting a scalar value during the inference process. Moreover, we develop a progressive aggregation sampling strategy to overcome the fixed-size constraints of pre-trained diffusion models, enabling adaptation to resolutions of any size. A comprehensive evaluation of our method using both synthetic and real-world benchmarks demonstrates its superiority over current state-of-the-art approaches. Code and models are available at //github.com/IceClear/StableSR.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.