亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We initiate the study of parallel algorithms for fairly allocating indivisible goods among agents with additive preferences. We give fast parallel algorithms for various fundamental problems, such as finding a Pareto Optimal and EF1 allocation under restricted additive valuations, finding an EF1 allocation for up to three agents, and finding an envy-free allocation with subsidies. On the flip side, we show that fast parallel algorithms are unlikely to exist (formally, $CC$-hard) for the problem of computing Round-Robin EF1 allocations.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和(he)存儲(chu)技術會議。 Publisher:USENIX。 SIT:

Evolutionary algorithms (EAs) have achieved remarkable success in tackling complex combinatorial optimization problems. However, EAs often demand carefully-designed operators with the aid of domain expertise to achieve satisfactory performance. In this work, we present the first study on large language models (LLMs) as evolutionary combinatorial optimizers. The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model. This approach is referred to as LLM-driven EA (LMEA). Specifically, in each generation of the evolutionary search, LMEA instructs the LLM to select parent solutions from current population, and perform crossover and mutation to generate offspring solutions. Then, LMEA evaluates these new solutions and include them into the population for the next generation. LMEA is equipped with a self-adaptation mechanism that controls the temperature of the LLM. This enables it to balance between exploration and exploitation and prevents the search from getting stuck in local optima. We investigate the power of LMEA on the classical traveling salesman problems (TSPs) widely used in combinatorial optimization research. Notably, the results show that LMEA performs competitively to traditional heuristics in finding high-quality solutions on TSP instances with up to 20 nodes. Additionally, we also study the effectiveness of LLM-driven crossover/mutation and the self-adaptation mechanism in evolutionary search. In summary, our results reveal the great potentials of LLMs as evolutionary optimizers for solving combinatorial problems. We hope our research shall inspire future explorations on LLM-driven EAs for complex optimization challenges.

The ability to process idiomatic or literal multiword expressions is a crucial aspect of understanding and generating any language. The task of generating contextually relevant continuations for narratives containing idiomatic (or literal) expressions can allow us to test the ability of generative language models (LMs) in understanding nuanced language containing non-compositional figurative text. We conduct a series of experiments using datasets in two distinct languages (English and Portuguese) under three different training settings (zero-shot, few-shot, and fine-tuned). Our results suggest that the models are only slightly better at generating continuations for literal contexts than idiomatic contexts, with exceedingly small margins. Furthermore, the models studied in this work perform equally well across both languages, indicating the robustness of generative models in performing this task.

Recent developments in the field of neural partial differential equation (PDE) solvers have placed a strong emphasis on neural operators. However, the paper "Message Passing Neural PDE Solver" by Brandstetter et al. published in ICLR 2022 revisits autoregressive models and designs a message passing graph neural network that is comparable with or outperforms both the state-of-the-art Fourier Neural Operator and traditional classical PDE solvers in its generalization capabilities and performance. This blog post delves into the key contributions of this work, exploring the strategies used to address the common problem of instability in autoregressive models and the design choices of the message passing graph neural network architecture.

Decentralized autonomous organizations (DAOs) are a new, rapidly-growing class of organizations governed by smart contracts. Here we describe how researchers can contribute to the emerging science of DAOs and other digitally-constituted organizations. From granular privacy primitives to mechanism designs to model laws, we identify high-impact problems in the DAO ecosystem where existing gaps might be tackled through a new data set or by applying tools and ideas from existing research fields such as political science, computer science, economics, law, and organizational science. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the wider research community to join the global effort to invent the next generation of organizations.

A principal seeks to learn about a binary state and can do so by enlisting an agent to acquire information over time using a Poisson information arrival technology. The agent learns about this state privately, and his effort choices are unobserved by the principal. The principal can reward the agent with a prize of fixed value as a function of the agent's sequence of reports and the realized state. We identify conditions that each individually ensure that the principal cannot do better than by eliciting a single report from the agent after all information has been acquired. We also show that such a static contract is suboptimal under sufficiently strong violations of these conditions. We contrast our solution to the case where the agent acquires information "all at once;" notably, the optimal contract in the dynamic environment may provide strictly positive base rewards to the agent even if his prediction about the state is incorrect.

We provide practical, efficient, and nonparametric methods for auditing the fairness of deployed classification and regression models. Whereas previous work relies on a fixed-sample size, our methods are sequential and allow for the continuous monitoring of incoming data, making them highly amenable to tracking the fairness of real-world systems. We also allow the data to be collected by a probabilistic policy as opposed to sampled uniformly from the population. This enables auditing to be conducted on data gathered for another purpose. Moreover, this policy may change over time and different policies may be used on different subpopulations. Finally, our methods can handle distribution shift resulting from either changes to the model or changes in the underlying population. Our approach is based on recent progress in anytime-valid inference and game-theoretic statistics-the "testing by betting" framework in particular. These connections ensure that our methods are interpretable, fast, and easy to implement. We demonstrate the efficacy of our approach on three benchmark fairness datasets.

We initiate the mathematical study of replicability as an algorithmic property in the context of reinforcement learning (RL). We focus on the fundamental setting of discounted tabular MDPs with access to a generative model. Inspired by Impagliazzo et al. [2022], we say that an RL algorithm is replicable if, with high probability, it outputs the exact same policy after two executions on i.i.d. samples drawn from the generator when its internal randomness is the same. We first provide an efficient $\rho$-replicable algorithm for $(\varepsilon, \delta)$-optimal policy estimation with sample and time complexity $\widetilde O\left(\frac{N^3\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$, where $N$ is the number of state-action pairs. Next, for the subclass of deterministic algorithms, we provide a lower bound of order $\Omega\left(\frac{N^3}{(1-\gamma)^3\cdot\varepsilon^2\cdot\rho^2}\right)$. Then, we study a relaxed version of replicability proposed by Kalavasis et al. [2023] called TV indistinguishability. We design a computationally efficient TV indistinguishable algorithm for policy estimation whose sample complexity is $\widetilde O\left(\frac{N^2\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$. At the cost of $\exp(N)$ running time, we transform these TV indistinguishable algorithms to $\rho$-replicable ones without increasing their sample complexity. Finally, we introduce the notion of approximate-replicability where we only require that two outputted policies are close under an appropriate statistical divergence (e.g., Renyi) and show an improved sample complexity of $\widetilde O\left(\frac{N\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$.

We study a setting where a data holder wishes to share data with a receiver, without revealing certain summary statistics of the data distribution (e.g., mean, standard deviation). It achieves this by passing the data through a randomization mechanism. We propose summary statistic privacy, a metric for quantifying the privacy risk of such a mechanism based on the worst-case probability of an adversary guessing the distributional secret within some threshold. Defining distortion as a worst-case Wasserstein-1 distance between the real and released data, we prove lower bounds on the tradeoff between privacy and distortion. We then propose a class of quantization mechanisms that can be adapted to different data distributions. We show that the quantization mechanism's privacy-distortion tradeoff matches our lower bounds under certain regimes, up to small constant factors. Finally, we demonstrate on real-world datasets that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms.

We study the interaction of structural subtyping with parametric polymorphism and recursively defined type constructors. Although structural subtyping is undecidable in this setting, we describe a notion of parametricity for type constructors and then exploit it to define parametric subtyping, a conceptually simple, decidable, and expressive fragment of structural subtyping that strictly generalizes rigid subtyping. We present and prove correct an effective saturation-based decision procedure for parametric subtyping, demonstrating its applicability using a variety of examples. We also provide an implementation of this decision procedure online.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

北京阿比特科技有限公司