亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compact data representations are one approach for improving generalization of learned functions. We explicitly illustrate the relationship between entropy and cardinality, both measures of compactness, including how gradient descent on the former reduces the latter. Whereas entropy is distribution sensitive, cardinality is not. We propose a third compactness measure that is a compromise between the two: expected cardinality, or the expected number of unique states in any finite number of draws, which is more meaningful than standard cardinality as it discounts states with negligible probability mass. We show that minimizing entropy also minimizes expected cardinality.

相關內容

The existence of the {\em typical set} is key for data compression strategies and for the emergence of robust statistical observables in macroscopic physical systems. Standard approaches derive its existence from a restricted set of dynamical constraints. However, given the enormous consequences for the understanding of the system's dynamics, and its role underlying the presence of stable, almost deterministic statistical patterns, a question arises whether typical sets exist in much more general scenarios. We demonstrate here that the typical set can be defined and characterized from general forms of entropy for a much wider class of stochastic processes than it was previously thought. This includes processes showing arbitrary path dependence, long range correlations or dynamic sampling spaces; suggesting that typicality is a generic property of stochastic processes, regardless of their complexity. Our results impact directly in the understanding of the stability of complex systems, open the door to new data compression strategies and points to the existence of statistical mechanics-like approaches to systems arbitrarily away from equilibrium with dynamic phase spaces. We argue that the potential emergence of robust properties in complex stochastic systems provided by the existence of typical sets has special relevance to biological systems.

This paper provides some first steps in developing empirical process theory for functions taking values in a vector space. Our main results provide bounds on the entropy of classes of smooth functions taking values in a Hilbert space, by leveraging theory from differential calculus of vector-valued functions and fractal dimension theory of metric spaces. We demonstrate how these entropy bounds can be used to show the uniform law of large numbers and asymptotic equicontinuity of the function classes, and also apply it to statistical learning theory in which the output space is a Hilbert space. We conclude with a discussion on the extension of Rademacher complexities to vector-valued function classes.

The optimality and sensitivity of the empirical risk minimization problem with relative entropy regularization (ERM-RER) are investigated for the case in which the reference is a sigma-finite measure instead of a probability measure. This generalization allows for a larger degree of flexibility in the incorporation of prior knowledge over the set of models. In this setting, the interplay of the regularization parameter, the reference measure, the risk function, and the empirical risk induced by the solution of the ERM-RER problem is characterized. This characterization yields necessary and sufficient conditions for the existence of a regularization parameter that achieves an arbitrarily small empirical risk with arbitrarily high probability. The sensitivity of the expected empirical risk to deviations from the solution of the ERM-RER problem is studied. The sensitivity is then used to provide upper and lower bounds on the expected empirical risk. Moreover, it is shown that the expectation of the sensitivity is upper bounded, up to a constant factor, by the square root of the lautum information between the models and the datasets.

Reed Muller (RM) codes are known for their good minimum distance. One can use their structure to construct polar-like codes with good distance properties by choosing the information set as the rows of the polarization matrix with the highest Hamming weight, instead of the most reliable synthetic channels. However, the information length options of RM codes are quite limited due to their specific structure. In this work, we present sufficient conditions to increase the information length by at least one bit for some underlying RM codes and in order to obtain pre-transformed polar-like codes with the same minimum distance than lower rate codes. Moreover, our findings are combined with the method presented in [1] to further reduce the number of minimum weight codewords. Numerical results show that the designed codes perform close to the meta-converse bound at short blocklengths and better than the polarized adjusted convolutional polar codes with the same parameters.

We consider the problem of computing a sequence of rankings that maximizes consumer-side utility while minimizing producer-side individual unfairness of exposure. While prior work has addressed this problem using linear or quadratic programs on bistochastic matrices, such approaches, relying on Birkhoff-von Neumann (BvN) decompositions, are too slow to be implemented at large scale. In this paper we introduce a geometrical object, a polytope that we call expohedron, whose points represent all achievable exposures of items for a Position Based Model (PBM). We exhibit some of its properties and lay out a Carath\'eodory decomposition algorithm with complexity $O(n^2\log(n))$ able to express any point inside the expohedron as a convex sum of at most $n$ vertices, where $n$ is the number of items to rank. Such a decomposition makes it possible to express any feasible target exposure as a distribution over at most $n$ rankings. Furthermore we show that we can use this polytope to recover the whole Pareto frontier of the multi-objective fairness-utility optimization problem, using a simple geometrical procedure with complexity $O(n^2\log(n))$. Our approach compares favorably to linear or quadratic programming baselines in terms of algorithmic complexity and empirical runtime and is applicable to any merit that is a non-decreasing function of item relevance. Furthermore our solution can be expressed as a distribution over only $n$ permutations, instead of the $(n-1)^2 + 1$ achieved with BvN decompositions. We perform experiments on synthetic and real-world datasets, confirming our theoretical results.

In the maximum state entropy exploration framework, an agent interacts with a reward-free environment to learn a policy that maximizes the entropy of the expected state visitations it is inducing. Hazan et al. (2019) noted that the class of Markovian stochastic policies is sufficient for the maximum state entropy objective, and exploiting non-Markovianity is generally considered pointless in this setting. In this paper, we argue that non-Markovianity is instead paramount for maximum state entropy exploration in a finite-sample regime. Especially, we recast the objective to target the expected entropy of the induced state visitations in a single trial. Then, we show that the class of non-Markovian deterministic policies is sufficient for the introduced objective, while Markovian policies suffer non-zero regret in general. However, we prove that the problem of finding an optimal non-Markovian policy is at least NP-complete. Despite this negative result, we discuss avenues to address the problem in a tractable way and how non-Markovian exploration could benefit the sample efficiency of online reinforcement learning in future works.

Using Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification. However, using gradient descent to train evolved architectures during the search can be computationally prohibitive. Here we propose a method to overcome this limitation by using a surrogate model which estimates the behavioural distance between two neural network architectures required to calculate the sparseness term in Novelty Search. We demonstrate a speedup of 10 times over previous work and significantly improve on previous reported results on three benchmark datasets from Computer Vision -- CIFAR-10, CIFAR-100, and SVHN. This results from the expanded architecture search space facilitated by using a surrogate. Our method represents an improved paradigm for implementing horizontal scaling of learning algorithms by making an explicit search for diversity considerably more tractable for the same bounded resources.

In many scenarios, named entity recognition (NER) models severely suffer from unlabeled entity problem, where the entities of a sentence may not be fully annotated. Through empirical studies performed on synthetic datasets, we find two causes of the performance degradation. One is the reduction of annotated entities and the other is treating unlabeled entities as negative instances. The first cause has less impact than the second one and can be mitigated by adopting pretraining language models. The second cause seriously misguides a model in training and greatly affects its performances. Based on the above observations, we propose a general approach that is capable of eliminating the misguidance brought by unlabeled entities. The core idea is using negative sampling to keep the probability of training with unlabeled entities at a very low level. Experiments on synthetic datasets and real-world datasets show that our model is robust to unlabeled entity problem and surpasses prior baselines. On well-annotated datasets, our model is competitive with state-of-the-art method.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

北京阿比特科技有限公司