The fast transmission rate of COVID-19 worldwide has made this virus the most important challenge of year 2020. Many mitigation policies have been imposed by the governments at different regional levels (country, state, county, and city) to stop the spread of this virus. Quantifying the effect of such mitigation strategies on the transmission and recovery rates, and predicting the rate of new daily cases are two crucial tasks. In this paper, we propose a hybrid modeling framework which not only accounts for such policies but also utilizes the spatial and temporal information to characterize the pattern of COVID-19 progression. Specifically, a piecewise susceptible-infected-recovered (SIR) model is developed while the dates at which the transmission/recover rates change significantly are defined as "break points" in this model. A novel and data-driven algorithm is designed to locate the break points using ideas from fused lasso and thresholding. In order to enhance the forecasting power and to describe additional temporal dependence among the daily number of cases, this model is further coupled with spatial smoothing covariates and vector auto-regressive (VAR) model. The proposed model is applied to several U.S. states and counties, and the results confirm the effect of "stay-at-home orders" and some states' early "re-openings" by detecting break points close to such events. Further, the model provided satisfactory short-term forecasts of the number of new daily cases at regional levels by utilizing the estimated spatio-temporal covariance structures. They were also better or on par with other proposed models in the literature, including flexible deep learning ones. Finally, selected theoretical results and empirical performance of the proposed methodology on synthetic data are reported which justify the good performance of the proposed method.
This paper investigates reconfigurable intelligent surface (RIS)-assisted secure multiuser communication systems subject to hardware impairments (HIs). We jointly optimize the beamforming vectors at the base station (BS) and the phase shifts of the reflecting elements at the RIS so as to maximize the weighted minimum secrecy rate (WMSR), subject to both transmission power constraints at the BS and unit-modulus constraints at the RIS. To address the formulated optimization problem, we first decouple it into two tractable subproblems and then use the block coordinate descent (BCD) method to alternately optimize the subproblems. Two different methods are proposed to solve the two obtained subproblems. The first method transforms each subproblem into a second order cone programming (SOCP) problem, which can be directly solved using CVX. The second method leverages the Minorization- Maximization (MM) algorithm. Specifically, we first derive a concave approximation function, which is a lower bound of the original objective function, and then the two subproblems are transformed into two simple surrogate problems with closedform solutions. Simulation results verify the performance gains of the proposed robust transmission method over existing nonrobust designs. In addition, the MM algorithm is shown to have much lower complexity than the SOCP-based algorithm.
Deploying reconfigurable intelligent surface (RIS) to enhance wireless transmission is a promising approach. In this paper, we investigate large-scale multi-RIS-assisted multi-cell systems, where multiple RISs are deployed in each cell. Different from the full-buffer scenario, the mutual interference in our system is not known a priori, and for this reason we apply the load coupling model to analyze this system. The objective is to minimize the total resource consumption subject to user demand requirement by optimizing the reflection coefficients in the cells. The cells are highly coupled and the overall problem is non-convex. To tackle this, we first investigate the single-cell case with given interference, and propose a low-complexity algorithm based on the Majorization-Minimization method to obtain a locally optimal solution. Then, we embed this algorithm into an algorithmic framework for the overall multi-cell problem, and prove its feasibility and convergence to a solution that is at least locally optimal. Simulation results demonstrate the benefit of RIS in time-frequency resource utilization in the multi-cell system.
We propose inferential tools for functional linear quantile regression where the conditional quantile of a scalar response is assumed to be a linear functional of a functional covariate. In contrast to conventional approaches, we employ kernel convolution to smooth the original loss function. The coefficient function is estimated under a reproducing kernel Hilbert space framework. A gradient descent algorithm is designed to minimize the smoothed loss function with a roughness penalty. With the aid of the Banach fixed-point theorem, we show the existence and uniqueness of our proposed estimator as the minimizer of the regularized loss function in an appropriate Hilbert space. Furthermore, we establish the convergence rate as well as the weak convergence of our estimator. As far as we know, this is the first weak convergence result for a functional quantile regression model. Pointwise confidence intervals and a simultaneous confidence band for the true coefficient function are then developed based on these theoretical properties. Numerical studies including both simulations and a data application are conducted to investigate the performance of our estimator and inference tools in finite sample.
COVID-19 has spread all over the world, having an enormous effect on our daily life and work. In response to the epidemic, a lot of important decisions need to be taken to save communities and economies worldwide. Data clearly plays a vital role in effective decision making. Data-driven decision making uses data related evidence and insights to guide the decision making process and to verify the plan of action before it is committed. To better handle the epidemic, governments and policy making institutes have investigated abundant data originating from COVID-19. These data include those related to medicine, knowledge, media, etc. Based on these data, many prevention and control policies are made. In this survey paper, we summarize the progress of data-driven decision making in the response to COVID-19, including COVID-19 prevention and control, psychological counselling, financial aid, work resumption, and school re-opening. We also propose some current challenges and open issues in data-driven decision making, including data collection and quality, complex data analysis, and fairness in decision making. This survey paper sheds light on current policy making driven by data, which also provides a feasible direction for further scientific research.
We propose Multivariate Quantile Function Forecaster (MQF$^2$), a global probabilistic forecasting method constructed using a multivariate quantile function and investigate its application to multi-horizon forecasting. Prior approaches are either autoregressive, implicitly capturing the dependency structure across time but exhibiting error accumulation with increasing forecast horizons, or multi-horizon sequence-to-sequence models, which do not exhibit error accumulation, but also do typically not model the dependency structure across time steps. MQF$^2$ combines the benefits of both approaches, by directly making predictions in the form of a multivariate quantile function, defined as the gradient of a convex function which we parametrize using input-convex neural networks. By design, the quantile function is monotone with respect to the input quantile levels and hence avoids quantile crossing. We provide two options to train MQF$^2$: with energy score or with maximum likelihood. Experimental results on real-world and synthetic datasets show that our model has comparable performance with state-of-the-art methods in terms of single time step metrics while capturing the time dependency structure.
When the threat of COVID-19 became widely acknowledged, many hoped that this epidemic would squash "the anti-vaccine movement". However, when vaccines started arriving in rich countries at the end of 2020, it appeared that vaccine hesitancy might be an issue even in the context of this major epidemic. Does it mean that the mobilization of vaccine-critical activists on social media is one of the main causes of this reticence to vaccinate against COVID-19? In this paper, we wish to contribute to current work on vaccine hesitancy during the COVID-19 epidemic by looking at one of the many mechanisms which can cause reticence towards vaccines: the capacity of vaccine-critical activists to influence a wider public on social media. We analyze the evolution of debates over the COVID-19 vaccine on the French Twittosphere, during two first years of the pandemic, with a particular attention to the spreading capacity of vaccine-critical websites. We address two main questions: 1) Did vaccine-critical contents gain ground during this period? 2) Who were the central actors in the diffusion of these contents? While debates over vaccines experienced a tremendous surge during this period, the share of vaccine-critical contents in these debates remains stable except for a limited number of short periods associated with specific events. Secondly, analyzing the community structure of the re-tweets hyper-graph, we reconstruct the mesoscale structure of the information flows, identifying and characterizing the major communities of users. We analyze their role in the information ecosystem: the largest right-wing community has a typical echo-chamber behavior collecting all the vaccine-critical tweets from outside and recirculating it inside the community. The smaller left-wing community is less permeable to vaccine-critical contents but, has a large capacity to spread it once adopted.
Mobile sensing has played a key role in providing digital solutions to aid with COVID-19 containment policies. These solutions include, among other efforts, enforcing social distancing and monitoring crowd movements in indoor spaces. However, such solutions may not be effective without mass adoption. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. This paper conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect indoor occupancy spectrum when different COVID-19 policies were enacted. Our work analyzes staff and students' mobility data from three different university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be put to practical application for institutional crowd control and discuss the implications of our findings for policy-making.
Critical transmission ranges (or radii) in wireless ad-hoc and sensor networks have been extensively investigated for various performance metrics such as connectivity, coverage, power assignment and energy consumption. However, the regions on which the networks are distributed are typically either squares or disks in existing works, which seriously limits the usage in real-life applications. In this article, we consider a convex region (i.e., a generalisation of squares and disks) on which wireless nodes are uniformly distributed. We have investigated two types of critical transmission radii, defined in terms of k-connectivity and the minimum vertex degree, respectively, and have also established their precise asymptotic distributions. These make the previous results obtained under the circumstance of squares or disks special cases of this work. More importantly, our results reveal how the region shape impacts on the critical transmission ranges: it is the length of the boundary of the (fixed-area) region that completely determines the transmission ranges. Furthermore, by isodiametric inequality, the smallest critical transmission ranges are achieved when regions are disks only.
Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.
Effective task management is essential to successful team collaboration. While the past decade has seen considerable innovation in systems that track and manage group tasks, these innovations have typically been outside of the principal communication channels: email, instant messenger, and group chat. Teams formulate, discuss, refine, assign, and track the progress of their collaborative tasks over electronic communication channels, yet they must leave these channels to update their task-tracking tools, creating a source of friction and inefficiency. To address this problem, we explore how bots might be used to mediate task management for individuals and teams. We deploy a prototype bot to eight different teams of information workers to help them create, assign, and keep track of tasks, all within their main communication channel. We derived seven insights for the design of future bots for coordinating work.