Multi-modal reasoning plays a vital role in bridging the gap between textual and visual information, enabling a deeper understanding of the context. This paper presents the Feature Swapping Multi-modal Reasoning (FSMR) model, designed to enhance multi-modal reasoning through feature swapping. FSMR leverages a pre-trained visual-language model as an encoder, accommodating both text and image inputs for effective feature representation from both modalities. It introduces a unique feature swapping module, enabling the exchange of features between identified objects in images and corresponding vocabulary words in text, thereby enhancing the model's comprehension of the interplay between images and text. To further bolster its multi-modal alignment capabilities, FSMR incorporates a multi-modal cross-attention mechanism, facilitating the joint modeling of textual and visual information. During training, we employ image-text matching and cross-entropy losses to ensure semantic consistency between visual and language elements. Extensive experiments on the PMR dataset demonstrate FSMR's superiority over state-of-the-art baseline models across various performance metrics.
Accurate, detailed, and high-frequent bathymetry, coupled with complex semantic content, is crucial for the undermapped shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods exploiting remote sensing images to derive bathymetry or seabed classes mainly exploit non-open data. This lack of openly accessible benchmark archives prevents the wider use of deep learning methods in such applications. To address this issue, in this paper we present the MagicBathyNet, which is a benchmark dataset made up of image patches of Sentinel2, SPOT-6 and aerial imagery, bathymetry in raster format and annotations of seabed classes. MagicBathyNet is then exploited to benchmark state-of-the-art methods in learning-based bathymetry and pixel-based classification. Dataset, pre-trained weights, and code are publicly available at www.magicbathy.eu/magicbathynet.html.
The Hardware Trojan (HT) problem can be thought of as a continuous game between attackers and defenders, each striving to outsmart the other by leveraging any available means for an advantage. Machine Learning (ML) has recently been key in advancing HT research. Various novel techniques, such as Reinforcement Learning (RL) and Graph Neural Networks (GNNs), have shown HT insertion and detection capabilities. HT insertion with ML techniques, specifically, has seen a spike in research activity due to the shortcomings of conventional HT benchmarks and the inherent human design bias that occurs when we create them. This work continues this innovation by presenting a tool called "TrojanForge", capable of generating HT adversarial examples that defeat HT detectors; demonstrating the capabilities of GAN-like adversarial tools for automatic HT insertion. We introduce an RL environment where the RL insertion agent interacts with HT detectors in an insertion-detection loop where the agent collects rewards based on its success in bypassing HT detectors. Our results show that this process leads to inserted HTs that evade various HT detectors, achieving high attack success percentages. This tool provides insight into why HT insertion fails in some instances and how we can leverage this knowledge in defense.
Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.
SLAM systems based on Gaussian Splatting have garnered attention due to their capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure detection. To address these issues, we introduce NGM-SLAM, the first 3DGS based SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We utilize neural radiance field submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate hole filling and high-quality scene expression, supporting monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.
Large-scale models rely heavily on 3D parallelism for distributed training, which utilizes tensor parallelism (TP) as the intra-operator parallelism to partition model states across GPUs. However, TP introduces significant communication overheads and complexity in modifying single-GPU code. In this paper, we propose a TP-free distributed framework ZeroPP, which leverages the hybrid of scalable inter-operator pipeline parallelism and intra-operator fully sharded data parallelism to train models at scale, reducing memory consumption and enabling high training efficiency. Through extensive experimentation, we demonstrate that ZeroPP achieves significant performance gains of up to 33% compared to conventional 3D parallelism while maintaining comparable GPU memory consumption.
With their prominent scene understanding and reasoning capabilities, pre-trained visual-language models (VLMs) such as GPT-4V have attracted increasing attention in robotic task planning. Compared with traditional task planning strategies, VLMs are strong in multimodal information parsing and code generation and show remarkable efficiency. Although VLMs demonstrate great potential in robotic task planning, they suffer from challenges like hallucination, semantic complexity, and limited context. To handle such issues, this paper proposes a multi-agent framework, i.e., GameVLM, to enhance the decision-making process in robotic task planning. In this study, VLM-based decision and expert agents are presented to conduct the task planning. Specifically, decision agents are used to plan the task, and the expert agent is employed to evaluate these task plans. Zero-sum game theory is introduced to resolve inconsistencies among different agents and determine the optimal solution. Experimental results on real robots demonstrate the efficacy of the proposed framework, with an average success rate of 83.3%.
With the increasing use of large language models (LLMs) in daily life, concerns have emerged regarding their potential misuse and societal impact. Watermarking is proposed to trace the usage of specific models by injecting patterns into their generated texts. An ideal watermark should produce outputs that are nearly indistinguishable from those of the original LLM (imperceptibility), while ensuring a high detection rate (efficacy), even when the text is partially altered (robustness). Despite many methods having been proposed, none have simultaneously achieved all three properties, revealing an inherent trade-off. This paper utilizes a key-centered scheme to unify existing watermarking techniques by decomposing a watermark into two distinct modules: a key module and a mark module. Through this decomposition, we demonstrate for the first time that the key module significantly contributes to the trade-off issues observed in prior methods. Specifically, this reflects the conflict between the scale of the key sampling space during generation and the complexity of key restoration during detection. To this end, we introduce \textbf{WaterPool}, a simple yet effective key module that preserves a complete key sampling space required by imperceptibility while utilizing semantics-based search to improve the key restoration process. WaterPool can integrate with most watermarks, acting as a plug-in. Our experiments with three well-known watermarking techniques show that WaterPool significantly enhances their performance, achieving near-optimal imperceptibility and markedly improving efficacy and robustness (+12.73\% for KGW, +20.27\% for EXP, +7.27\% for ITS).
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.