Deep neural networks (DNNs) were shown to facilitate the operation of uplink multiple-input multiple-output (MIMO) receivers, with emerging architectures augmenting modules of classic receiver processing. Current designs consider static DNNs, whose architecture is fixed and weights are pre-trained. This induces a notable challenge, as the resulting MIMO receiver is suitable for a given configuration, i.e., channel distribution and number of users, while in practice these parameters change frequently with network variations and users leaving and joining the network. In this work, we tackle this core challenge of DNN-aided MIMO receivers. We build upon the concept of hypernetworks, augmenting the receiver with a pre-trained deep model whose purpose is to update the weights of the DNN-aided receiver upon instantaneous channel variations. We design our hypernetwork to augment modular deep receivers, leveraging their modularity to have the hypernetwork adapt not only the weights, but also the architecture. Our modular hypernetwork leads to a DNN-aided receiver whose architecture and resulting complexity adapts to the number of users, in addition to channel variations, without retraining. Our numerical studies demonstrate superior error-rate performance of modular hypernetworks in time-varying channels compared to static pre-trained receivers, while providing rapid adaptivity and scalability to network variations.
Batched sparse (BATS) code is a class of batched network code that can achieve a close-to-optimal rate when an optimal degree distribution is provided. We observed that most probability masses in this optimal distribution are very small, i.e., the distribution "looks" sparse. In this paper, we investigate the sparsity optimization of degree distribution for BATS codes that produces sparse degree distributions. There are many advantages to use a sparse degree distribution, say, it is robust to precision errors when sampling the degree distribution during encoding and decoding in practice. We discuss a few heuristics and also a way to obtain an exact sparsity solution. These approaches give a trade-off between computational time and achievable rate, thus give us the flexibility to adopt BATS codes in various scenarios, e.g., device with limited computational power, stable channel condition, etc.
We show the effectiveness of automatic differentiation in efficiently and correctly computing and controlling the spectrum of implicitly linear operators, a rich family of layer types including all standard convolutional and dense layers. We provide the first clipping method which is correct for general convolution layers, and illuminate the representational limitation that caused correctness issues in prior work. We study the effect of the batch normalization layers when concatenated with convolutional layers and show how our clipping method can be applied to their composition. By comparing the accuracy and performance of our algorithms to the state-of-the-art methods, using various experiments, we show they are more precise and efficient and lead to better generalization and adversarial robustness. We provide the code for using our methods at //github.com/Ali-E/FastClip.
Combinatorial Optimization (CO) addresses many important problems, including the challenging Maximum Independent Set (MIS) problem. Alongside exact and heuristic solvers, differentiable approaches have emerged, often using continuous relaxations of ReLU-based or quadratic objectives. Noting that an MIS in a graph is a Maximum Clique (MC) in its complement, we propose a new quadratic formulation for MIS by incorporating an MC term, improving convergence and exploration. We show that every maximal independent set corresponds to a local minimizer, derive conditions for the MIS size, and characterize stationary points. To solve our non-convex objective, we propose solving parallel multiple initializations using momentum-based gradient descent, complemented by an efficient MIS checking criterion derived from our theory. Therefore, we dub our method as parallelized Clique-Informed Quadratic Optimization for MIS (pCQO-MIS). Our experimental results demonstrate the effectiveness of the proposed method compared to exact, heuristic, sampling, and data-centric approaches. Notably, our method avoids the out-of-distribution tuning and reliance on (un)labeled data required by data-centric methods, while achieving superior MIS sizes and competitive runtime relative to their inference time. Additionally, a key advantage of pCQO-MIS is that, unlike exact and heuristic solvers, the runtime scales only with the number of nodes in the graph, not the number of edges.
Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology. It is tailored for multi-period experiments and is particularly effective in settings with many units and prevalent network interference. The framework models causal effects as a dynamic process where a treated unit's impact propagates through the network via neighboring units until equilibrium is reached. This approach allows us to approximate the dynamics of potential outcomes over time, enabling the extraction of valuable information before treatment effects reach equilibrium. Utilizing causal message-passing, we introduce a practical algorithm to estimate the total treatment effect, defined as the impact observed when all units are treated compared to the scenario where no unit receives treatment. We demonstrate the effectiveness of this approach across five numerical scenarios, each characterized by a distinct interference structure.
Recent work has suggested that certain neural network architectures-particularly recurrent neural networks (RNNs) and implicit neural networks (INNs) are capable of logical extrapolation. That is, one may train such a network on easy instances of a specific task and then apply it successfully to more difficult instances of the same task. In this paper, we revisit this idea and show that (i) The capacity for extrapolation is less robust than previously suggested. Specifically, in the context of a maze-solving task, we show that while INNs (and some RNNs) are capable of generalizing to larger maze instances, they fail to generalize along axes of difficulty other than maze size. (ii) Models that are explicitly trained to converge to a fixed point (e.g. the INN we test) are likely to do so when extrapolating, while models that are not (e.g. the RNN we test) may exhibit more exotic limiting behaviour such as limit cycles, even when they correctly solve the problem. Our results suggest that (i) further study into why such networks extrapolate easily along certain axes of difficulty yet struggle with others is necessary, and (ii) analyzing the dynamics of extrapolation may yield insights into designing more efficient and interpretable logical extrapolators.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.