亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive a new analysis of Follow The Regularized Leader (FTRL) for online learning with delayed bandit feedback. By separating the cost of delayed feedback from that of bandit feedback, our analysis allows us to obtain new results in three important settings. On the one hand, we derive the first optimal (up to logarithmic factors) regret bounds for combinatorial semi-bandits with delay and adversarial Markov decision processes with delay (and known transition functions). On the other hand, we use our analysis to derive an efficient algorithm for linear bandits with delay achieving near-optimal regret bounds. Our novel regret decomposition shows that FTRL remains stable across multiple rounds under mild assumptions on the Hessian of the regularizer.

相關內容

Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarity with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on P\'olya-Gamma random variables for a range of commonly encountered logistic regression models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial, and multinomial logit models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straightforward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, novel marginal data augmentation strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and real data applications.

In Japan, the Housing and Land Survey (HLS) provides municipality-level grouped data on household incomes. Although these data can be used for effective local policymaking, their analyses are hindered by several challenges, such as limited information attributed to grouping, the presence of non-sampled areas, and the very low frequency of implementing surveys. To address these challenges, we propose a novel grouped-data-based spatio-temporal finite mixture model to model the income distributions of multiple spatial units at multiple time points. A unique feature of the proposed method is that all the areas share common latent distributions and that the mixing proportions that include the spatial and temporal effects capture the potential area-wise heterogeneity. Thus, incorporating these effects can smooth out the quantities of interest over time and space, impute missing values, and predict future values. By treating the HLS data with the proposed method, we obtain complete maps of the income and poverty measures at an arbitrary time point, which can be used to facilitate rapid and efficient policymaking with fine granularity.

The rate-distortion curve captures the fundamental tradeoff between compression length and resolution in lossy data compression. However, it conceals the underlying dynamics of optimal source encodings or test channels. We argue that these typically follow a piecewise smooth trajectory as the source information is compressed. These smooth dynamics are interrupted at bifurcations, where solutions change qualitatively. Sub-optimal test channels may collide or exchange optimality there, for example. There is typically a plethora of sub-optimal solutions, which stems from restrictions of the reproduction alphabet. We devise a family of algorithms that exploits the underlying dynamics to track a given test channel along the rate-distortion curve. To that end, we express implicit derivatives at the roots of a non-linear operator by higher derivative tensors. Providing closed-form formulae for the derivative tensors of Blahut's algorithm thus yields implicit derivatives of arbitrary order at a given test channel, thereby approximating others in its vicinity. Finally, our understanding of bifurcations guarantees the optimality of the root being traced, under mild assumptions, while allowing us to detect when our assumptions fail. Beyond the interest in rate distortion, this is an example of how understanding a problem's bifurcations can be translated to a numerical algorithm.

This article presents a general approximation-theoretic framework to analyze measure transport algorithms for probabilistic modeling. A primary motivating application for such algorithms is sampling -- a central task in statistical inference and generative modeling. We provide a priori error estimates in the continuum limit, i.e., when the measures (or their densities) are given, but when the transport map is discretized or approximated using a finite-dimensional function space. Our analysis relies on the regularity theory of transport maps and on classical approximation theory for high-dimensional functions. A third element of our analysis, which is of independent interest, is the development of new stability estimates that relate the distance between two maps to the distance~(or divergence) between the pushforward measures they define. We present a series of applications of our framework, where quantitative convergence rates are obtained for practical problems using Wasserstein metrics, maximum mean discrepancy, and Kullback--Leibler divergence. Specialized rates for approximations of the popular triangular Kn{\"o}the-Rosenblatt maps are obtained, followed by numerical experiments that demonstrate and extend our theory.

We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t L\'evy process with constant scale and arbitrary degrees of freedom. The model is observed at a high frequency over an extending period, under which we can quantify how the sampling frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution is not closed under convolution, making it difficult to estimate all the parameters fully based on the high-frequency time scale. To efficiently deal with the intricate nature from both theoretical and computational points of view, we propose a two-step quasi-likelihood analysis: first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient vector and the scale parameter; then, we construct the sequence of the unit-period cumulative residuals to estimate the remaining degrees of freedom. In particular, using full data in the first step causes a problem stemming from the small-time Cauchy approximation, showing the need for data thinning. Also presented is the implementation in a computer through the yuima package and some numerical examples.

The majority of machine learning methods can be regarded as the minimization of an unavailable risk function. To optimize the latter, given samples provided in a streaming fashion, we define a general stochastic Newton algorithm and its weighted average version. In several use cases, both implementations will be shown not to require the inversion of a Hessian estimate at each iteration, but a direct update of the estimate of the inverse Hessian instead will be favored. This generalizes a trick introduced in [2] for the specific case of logistic regression, by directly updating the estimate of the inverse Hessian. Under mild assumptions such as local strong convexity at the optimum, we establish almost sure convergences and rates of convergence of the algorithms, as well as central limit theorems for the constructed parameter estimates. The unified framework considered in this paper covers the case of linear, logistic or softmax regressions to name a few. Numerical experiments on simulated data give the empirical evidence of the pertinence of the proposed methods, which outperform popular competitors particularly in case of bad initializa-tions.

We propose a novel value approximation method, namely Eigensubspace Regularized Critic (ERC) for deep reinforcement learning (RL). ERC is motivated by an analysis of the dynamics of Q-value approximation error in the Temporal-Difference (TD) method, which follows a path defined by the 1-eigensubspace of the transition kernel associated with the Markov Decision Process (MDP). It reveals a fundamental property of TD learning that has remained unused in previous deep RL approaches. In ERC, we propose a regularizer that guides the approximation error tending towards the 1-eigensubspace, resulting in a more efficient and stable path of value approximation. Moreover, we theoretically prove the convergence of the ERC method. Besides, theoretical analysis and experiments demonstrate that ERC effectively reduces the variance of value functions. Among 26 tasks in the DMControl benchmark, ERC outperforms state-of-the-art methods for 20. Besides, it shows significant advantages in Q-value approximation and variance reduction. Our code is available at //sites.google.com/view/erc-ecml23/.

We develop several provably efficient model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov Decision Processes (MDPs). We consider both online setting and the setting with access to a simulator. In the online setting, we propose model-free RL algorithms based on reference-advantage decomposition. Our algorithm achieves $\widetilde{O}(S^5A^2\mathrm{sp}(h^*)\sqrt{T})$ regret after $T$ steps, where $S\times A$ is the size of state-action space, and $\mathrm{sp}(h^*)$ the span of the optimal bias function. Our results are the first to achieve optimal dependence in $T$ for weakly communicating MDPs. In the simulator setting, we propose a model-free RL algorithm that finds an $\epsilon$-optimal policy using $\widetilde{O} \left(\frac{SA\mathrm{sp}^2(h^*)}{\epsilon^2}+\frac{S^2A\mathrm{sp}(h^*)}{\epsilon} \right)$ samples, whereas the minimax lower bound is $\Omega\left(\frac{SA\mathrm{sp}(h^*)}{\epsilon^2}\right)$. Our results are based on two new techniques that are unique in the average-reward setting: 1) better discounted approximation by value-difference estimation; 2) efficient construction of confidence region for the optimal bias function with space complexity $O(SA)$.

Multidimensional scaling is widely used to reconstruct a map with the points' coordinates in a low-dimensional space from the original high-dimensional space while preserving the pairwise distances. In a Bayesian framework, the current approach using Markov chain Monte Carlo algorithms has limitations in terms of model generalization and performance comparison. To address these limitations, a general framework that incorporates non-Gaussian errors and robustness to fit different types of dissimilarities is developed. Then, an adaptive inference method using annealed Sequential Monte Carlo algorithm for Bayesian multidimensional scaling is proposed. This algorithm performs inference sequentially in time and provides an approximate posterior distribution over the points' coordinates in a low-dimensional space and an unbiased estimator for the marginal likelihood. In this study, we compare the performance of different models based on marginal likelihoods, which are produced as a byproduct of the adaptive annealed Sequential Monte Carlo algorithm. Using synthetic and real data, we demonstrate the effectiveness of the proposed algorithm. Our results show that the proposed algorithm outperforms other benchmark algorithms under the same computational budget based on common metrics used in the literature. The implementation of our proposed method and applications are available at //github.com/nunujiarui/GBMDS.

We study distributed estimation and learning problems in a networked environment in which agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. By exchanging information about their private observations, the agents can collectively estimate the unknown quantities, but they also face privacy risks. The goal of our aggregation schemes is to combine the observed data efficiently over time and across the network, while accommodating the privacy needs of the agents and without any coordination beyond their local neighborhoods. Our algorithms enable the participating agents to estimate a complete sufficient statistic from private signals that are acquired offline or online over time, and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints. In every case, we demonstrate the efficiency of our algorithms by proving convergence to the estimators of a hypothetical, omniscient observer that has central access to all of the signals. We also provide convergence rate analysis and finite-time performance guarantees and show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent's sensitivity to their signal and network characteristics. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes.

北京阿比特科技有限公司