We leverage the duality between risk-averse and distributionally robust optimization (DRO) to devise a distributionally robust estimator that strictly outperforms the empirical average for all probability distributions with negative excess kurtosis. The aforesaid estimator solves the $\chi^{2}-$robust mean squared error problem in closed form.
In several Machine Learning (ML) clustering and dimensionality reduction approaches, such as non-negative matrix factorization (NMF), RESCAL, and K-Means clustering, users must select a hyper-parameter k to define the number of clusters or components that yield an ideal separation of samples or clean clusters. This selection, while difficult, is crucial to avoid overfitting or underfitting the data. Several ML applications use scoring methods (e.g., Silhouette and Davies Boulding scores) to evaluate the cluster pattern stability for a specific k. The score is calculated for different trials over a range of k, and the ideal k is heuristically selected as the value before the model starts overfitting, indicated by a drop or increase in the score resembling an elbow curve plot. While the grid-search method can be used to accurately find a good k value, visiting a range of k can become time-consuming and computationally resource-intensive. In this paper, we introduce the Binary Bleed method based on binary search, which significantly reduces the k search space for these grid-search ML algorithms by truncating the target k values from the search space using a heuristic with thresholding over the scores. Binary Bleed is designed to work with single-node serial, single-node multi-processing, and distributed computing resources. In our experiments, we demonstrate the reduced search space gain over a naive sequential search of the ideal k and the accuracy of the Binary Bleed in identifying the correct k for NMFk, K-Means pyDNMFk, and pyDRESCALk with Silhouette and Davies Boulding scores. We make our implementation of Binary Bleed for the NMF algorithm available on GitHub.
Markov chains are the de facto finite-state model for stochastic dynamical systems, and Markov decision processes (MDPs) extend Markov chains by incorporating non-deterministic behaviors. Given an MDP and rewards on states, a classical optimization criterion is the maximal expected total reward where the MDP stops after T steps, which can be computed by a simple dynamic programming algorithm. We consider a natural generalization of the problem where the stopping times can be chosen according to a probability distribution, such that the expected stopping time is T, to optimize the expected total reward. Quite surprisingly we establish inter-reducibility of the expected stopping-time problem for Markov chains with the Positivity problem (which is related to the well-known Skolem problem), for which establishing either decidability or undecidability would be a major breakthrough. Given the hardness of the exact problem, we consider the approximate version of the problem: we show that it can be solved in exponential time for Markov chains and in exponential space for MDPs.
Analysis of 3D segmentation models, especially in the context of medical imaging, is often limited to segmentation performance metrics that overlook the crucial aspect of explainability and bias. Currently, effectively explaining these models with saliency maps is challenging due to the high dimensions of input images multiplied by the ever-growing number of segmented class labels. To this end, we introduce Agg^2Exp, a methodology for aggregating fine-grained voxel attributions of the segmentation model's predictions. Unlike classical explanation methods that primarily focus on the local feature attribution, Agg^2Exp enables a more comprehensive global view on the importance of predicted segments in 3D images. Our benchmarking experiments show that gradient-based voxel attributions are more faithful to the model's predictions than perturbation-based explanations. As a concrete use-case, we apply Agg^2Exp to discover knowledge acquired by the Swin UNEt TRansformer model trained on the TotalSegmentator v2 dataset for segmenting anatomical structures in computed tomography medical images. Agg^2Exp facilitates the explanatory analysis of large segmentation models beyond their predictive performance.
The distribution of subpopulations is an important property hidden within a dataset. Uncovering and analyzing the subpopulation distribution within datasets provides a comprehensive understanding of the datasets, standing as a powerful tool beneficial to various downstream tasks, including Dataset Subpopulation Organization, Subpopulation Shift, and Slice Discovery. Despite its importance, there has been no work that systematically explores the subpopulation distribution of datasets to our knowledge. To address the limitation and solve all the mentioned tasks in a unified way, we introduce a novel concept of subpopulation structures to represent, analyze, and utilize subpopulation distributions within datasets. To characterize the structures in an interpretable manner, we propose the Subpopulation Structure Discovery with Large Language Models (SSD-LLM) framework, which employs world knowledge and instruction-following capabilities of Large Language Models (LLMs) to linguistically analyze informative image captions and summarize the structures. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery. Furthermore, we propose complete workflows to address downstream tasks, named Task-specific Tuning, showcasing the application of the discovered structure to a spectrum of subpopulation-related tasks, including dataset subpopulation organization, subpopulation shift, and slice discovery.
Resilient cyber-physical systems comprise computing systems able to continuously interact with the physical environment in which they operate, despite runtime errors. The term resilience refers to the ability to cope with unexpected inputs while delivering correct service. Examples of resilient computing systems are Google's PageRank and the Bubblesort algorithm. Engineering for resilient cyber-physical systems requires a paradigm shift, prioritizing adaptability to dynamic environments. Software as a tool for self-management is a key instrument for dealing with uncertainty and embedding resilience in these systems. Yet, software engineers encounter the ongoing challenge of ensuring resilience despite environmental dynamic change. My thesis aims to pioneer an engineering discipline for resilient cyber-physical systems. Over four years, we conducted studies, built methods and tools, delivered software packages, and a website offering guidance to practitioners. This paper provides a condensed overview of the problems tackled, our methodology, key contributions, and results highlights. Seeking feedback from the community, this paper serves both as preparation for the thesis defense and as insight into future research prospects.
Retrieval augmented generation (RAG) enhances the accuracy and reliability of generative AI models by sourcing factual information from external databases, which is extensively employed in document-grounded question-answering (QA) tasks. Off-the-shelf RAG flows are well pretrained on general-purpose documents, yet they encounter significant challenges when being applied to knowledge-intensive vertical domains, such as electronic design automation (EDA). This paper addresses such issue by proposing a customized RAG framework along with three domain-specific techniques for EDA tool documentation QA, including a contrastive learning scheme for text embedding model fine-tuning, a reranker distilled from proprietary LLM, and a generative LLM fine-tuned with high-quality domain corpus. Furthermore, we have developed and released a documentation QA evaluation benchmark, ORD-QA, for OpenROAD, an advanced RTL-to-GDSII design platform. Experimental results demonstrate that our proposed RAG flow and techniques have achieved superior performance on ORD-QA as well as on a commercial tool, compared with state-of-the-arts. The ORD-QA benchmark and the training dataset for our customized RAG flow are open-source at //github.com/lesliepy99/RAG-EDA.
The cost of distributed quantum operations such as the telegate and teledata protocols is high due to latencies from distributing entangled photons and classical information. This paper proposes an extension to the telegate and teledata protocols to allow for asynchronous classical communication which hides the cost of distributed quantum operations. We then discuss the benefits and limitations of these asynchronous protocols and propose a potential way to improve these asynchronous protocols using nonunitary operators. Finally, a quantum network card is described as an example of how asynchronous quantum operations might be used.
We contribute to a better understanding of the class of functions that can be represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning any function. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). As a by-product of our investigations, we settle an old conjecture about piecewise linear functions by Wang and Sun (2005) in the affirmative. We also present upper bounds on the sizes of neural networks required to represent functions with logarithmic depth.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.