We study a sequential binary prediction setting where the forecaster is evaluated in terms of the calibration distance, which is defined as the $L_1$ distance between the predicted values and the set of predictions that are perfectly calibrated in hindsight. This is analogous to a calibration measure recently proposed by B{\l}asiok, Gopalan, Hu and Nakkiran (STOC 2023) for the offline setting. The calibration distance is a natural and intuitive measure of deviation from perfect calibration, and satisfies a Lipschitz continuity property which does not hold for many popular calibration measures, such as the $L_1$ calibration error and its variants. We prove that there is a forecasting algorithm that achieves an $O(\sqrt{T})$ calibration distance in expectation on an adversarially chosen sequence of $T$ binary outcomes. At the core of this upper bound is a structural result showing that the calibration distance is accurately approximated by the lower calibration distance, which is a continuous relaxation of the former. We then show that an $O(\sqrt{T})$ lower calibration distance can be achieved via a simple minimax argument and a reduction to online learning on a Lipschitz class. On the lower bound side, an $\Omega(T^{1/3})$ calibration distance is shown to be unavoidable, even when the adversary outputs a sequence of independent random bits, and has an additional ability to early stop (i.e., to stop producing random bits and output the same bit in the remaining steps). Interestingly, without this early stopping, the forecaster can achieve a much smaller calibration distance of $\mathrm{polylog}(T)$.
Two algorithms for computing the rational univariate representation of zero-dimensional ideals with parameters are presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently with the help of the extended subresultant theorem for parametric cases, two ideas are given to conduct the further partition of parameter space for choosing and checking the separating element. Based on these, we give two algorithms for computing rational univariate representations of zero-dimensional ideals with parameters. Furthermore, the two algorithms have been implemented on the computer algebra system Singular. Experimental data show that the second algorithm has the better performance in contrast to the first one.
Long-tailed data is prevalent in real-world classification tasks and heavily relies on supervised information, which makes the annotation process exceptionally labor-intensive and time-consuming. Unfortunately, despite being a common approach to mitigate labeling costs, existing weakly supervised learning methods struggle to adequately preserve supervised information for tail samples, resulting in a decline in accuracy for the tail classes. To alleviate this problem, we introduce a novel weakly supervised labeling setting called Reduced Label. The proposed labeling setting not only avoids the decline of supervised information for the tail samples, but also decreases the labeling costs associated with long-tailed data. Additionally, we propose an straightforward and highly efficient unbiased framework with strong theoretical guarantees to learn from these Reduced Labels. Extensive experiments conducted on benchmark datasets including ImageNet validate the effectiveness of our approach, surpassing the performance of state-of-the-art weakly supervised methods.
The computational treatment of arguments on controversial issues has been subject to extensive NLP research, due to its envisioned impact on opinion formation, decision making, writing education, and the like. A critical task in any such application is the assessment of an argument's quality - but it is also particularly challenging. In this position paper, we start from a brief survey of argument quality research, where we identify the diversity of quality notions and the subjectiveness of their perception as the main hurdles towards substantial progress on argument quality assessment. We argue that the capabilities of instruction-following large language models (LLMs) to leverage knowledge across contexts enable a much more reliable assessment. Rather than just fine-tuning LLMs towards leaderboard chasing on assessment tasks, they need to be instructed systematically with argumentation theories and scenarios as well as with ways to solve argument-related problems. We discuss the real-world opportunities and ethical issues emerging thereby.
Lottery ticket hypothesis for deep neural networks emphasizes the importance of initialization used to re-train the sparser networks obtained using the iterative magnitude pruning process. An explanation for why the specific initialization proposed by the lottery ticket hypothesis tends to work better in terms of generalization (and training) performance has been lacking. Moreover, the underlying principles in iterative magnitude pruning, like the pruning of smaller magnitude weights and the role of the iterative process, lack full understanding and explanation. In this work, we attempt to provide insights into these phenomena by empirically studying the volume/geometry and loss landscape characteristics of the solutions obtained at various stages of the iterative magnitude pruning process.
This work discusses the benefits of having multiple simulated environments with different degrees of realism for the development of algorithms in scenarios populated by autonomous nodes capable of communication and mobility. This approach aids the development experience and generates robust algorithms. It also proposes GrADyS-SIM NextGen as a solution that enables development on a single programming language and toolset over multiple environments with varying levels of realism. Finally, we illustrate the usefulness of this approach with a toy problem that makes use of the simulation framework, taking advantage of the proposed environments to iteratively develop a robust solution.
We consider a nonparametric regression model with continuous endogenous independent variables when only discrete instruments are available that are independent of the error term. While this framework is very relevant for applied research, its implementation is cumbersome, as the regression function becomes the solution to a nonlinear integral equation. We propose a simple iterative procedure to estimate such models and showcase some of its asymptotic properties. In a simulation experiment, we discuss the details of its implementation in the case when the instrumental variable is binary. We conclude with an empirical application in which we examine the effect of pollution on house prices in a short panel of U.S. counties.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.