亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various techniques have been proposed to leverage the capabilities of code language models (CLMs) for SE tasks. While these techniques typically evaluate their effectiveness using publicly available datasets, the evaluation can be subject to data contamination threats where the evaluation datasets have already been used to train the concerned CLMs. This can significantly affect the reliability of the evaluation. Different countermeasures have been suggested to mitigate the data contamination threat. Countermeasures include using more recent data, curating new data, and refactoring existing data are introduced, yet it is unclear whether these countermeasures could really mitigate data contamination threats to model evaluation. To fill the gap, we systematically study to quantify the impacts of these countermeasures on CLMs' performance. To facilitate the study, we collected over 2 million Python functions with timestamps ranging from January 1st, 2018, to December 31st, 2023. The data created before the models' cut-off date are considered "contaminated data", while the data where the countermeasures are taken are regarded as "cleansed data". We study the impact of these countermeasures by investigating the difference in CLMs' performance on contaminated and cleansed data derived from different countermeasures. Our experiments yield several interesting observations. For instance, CLMs do not necessarily perform worse on data after the models' cut-off date; on the contrary, they sometimes perform better. In addition, refactoring did not always result in decreased performance; it could lead to improvements instead. Furthermore, existing metrics such as perplexity cannot distinguish contaminated/cleansed data. We hope that the results and observations could help deepen the understanding of CLMs' capabilities and inform the community about data contamination.

相關內容

Routing protocols help in transmitting the sensed data from UAVs monitoring the targets (called target UAVs) to the BS. However, the highly dynamic nature of an autonomous, decentralized UAV network leads to frequent route breaks or traffic disruptions. Traditional routing schemes cannot quickly adapt to dynamic UAV networks and/or incur large control overhead and delays. To establish stable, high-quality routes from target UAVs to the BS, we design a hybrid reactive routing scheme called pipe routing that is mobility, congestion, and energy-aware. The pipe routing scheme discovers routes on-demand and proactively switches to alternate high-quality routes within a limited region around the active routes (called the pipe) when needed, reducing the number of route breaks and increasing data throughput. We then design a novel topology control-based pipe routing scheme to maintain robust connectivity in the pipe region around the active routes, leading to improved route stability and increased throughput with minimal impact on the coverage performance of the UAV network.

The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation. Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the limitations of neural models when confronting such challenges.

Evolution Strategies (ES) are effective gradient-free optimization methods that can be competitive with gradient-based approaches for policy search. ES only rely on the total episodic scores of solutions in their population, from which they estimate fitness gradients for their update with no access to true gradient information. However this makes them sensitive to deceptive fitness landscapes, and they tend to only explore one way to solve a problem. Quality-Diversity methods such as MAP-Elites introduced additional information with behavior descriptors (BD) to return a population of diverse solutions, which helps exploration but leads to a large part of the evaluation budget not being focused on finding the best performing solution. Here we show that behavior information can also be leveraged to find the best policy by identifying promising search areas which can then be efficiently explored with ES. We introduce the framework of Quality with Just Enough Diversity (JEDi) which learns the relationship between behavior and fitness to focus evaluations on solutions that matter. When trying to reach higher fitness values, JEDi outperforms both QD and ES methods on hard exploration tasks like mazes and on complex control problems with large policies.

Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM's input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.

Recently, code generation driven by large language models (LLMs) has become increasingly popular. However, automatically generating code for machine learning (ML) tasks still poses significant challenges. This paper explores the limits of program synthesis for ML by combining LLMs and automated machine learning (autoML). Specifically, our goal is to fully automate the code generation process for the entire ML workflow, from data preparation to modeling and post-processing, utilizing only textual descriptions of the ML tasks. To manage the length and diversity of ML programs, we propose to break each ML program into smaller, manageable parts. Each part is generated separately by the LLM, with careful consideration of their compatibilities. To implement the approach, we design a testing technique for ML programs. Furthermore, our approach enables integration with autoML. In our approach, autoML serves to numerically assess and optimize the ML programs generated by LLMs. LLMs, in turn, help to bridge the gap between theoretical, algorithm-centered autoML and practical autoML applications. This mutual enhancement underscores the synergy between LLMs and autoML in program synthesis for ML. In experiments across various ML tasks, our method outperforms existing methods in 10 out of 12 tasks for generating ML programs. In addition, autoML significantly improves the performance of the generated ML programs. In the experiments, our method, Text-to-ML, achieves fully automated synthesis of the entire ML pipeline based solely on textual descriptions of the ML tasks.

Neural models have demonstrated remarkable performance across diverse ranking tasks. However, the processes and internal mechanisms along which they determine relevance are still largely unknown. Existing approaches for analyzing neural ranker behavior with respect to IR properties rely either on assessing overall model behavior or employing probing methods that may offer an incomplete understanding of causal mechanisms. To provide a more granular understanding of internal model decision-making processes, we propose the use of causal interventions to reverse engineer neural rankers, and demonstrate how mechanistic interpretability methods can be used to isolate components satisfying term-frequency axioms within a ranking model. We identify a group of attention heads that detect duplicate tokens in earlier layers of the model, then communicate with downstream heads to compute overall document relevance. More generally, we propose that this style of mechanistic analysis opens up avenues for reverse engineering the processes neural retrieval models use to compute relevance. This work aims to initiate granular interpretability efforts that will not only benefit retrieval model development and training, but ultimately ensure safer deployment of these models.

Domain experts can play a crucial role in guiding data scientists to optimize machine learning models while ensuring contextual relevance for downstream use. However, in current workflows, such collaboration is challenging due to differing expertise, abstract documentation practices, and lack of access and visibility into low-level implementation artifacts. To address these challenges and enable domain expert participation, we introduce CellSync, a collaboration framework comprising (1) a Jupyter Notebook extension that continuously tracks changes to dataframes and model metrics and (2) a Large Language Model powered visualization dashboard that makes those changes interpretable to domain experts. Through CellSync's cell-level dataset visualization with code summaries, domain experts can interactively examine how individual data and modeling operations impact different data segments. The chat features enable data-centric conversations and targeted feedback to data scientists. Our preliminary evaluation shows that CellSync provides transparency and promotes critical discussions about the intents and implications of data operations.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司