亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The majority of existing large 3D shape datasets contain meshes that lend themselves extremely well to visual applications such as rendering, yet tend to be topologically invalid (i.e, contain non-manifold edges and vertices, disconnected components, self-intersections). Therefore, it is of no surprise that state of the art studies in shape understanding do not explicitly use this 3D information. In conjunction with this, triangular meshes remain the dominant shape representation for many downstream tasks, and their connectivity remain a relatively untapped source of potential for more profound shape reasoning. In this paper, we introduce ROAR, an iterative geometry/topology evolution approach to reconstruct 2-manifold triangular meshes from arbitrary 3D shape representations, that is highly suitable for large existing in-the-wild datasets. ROAR leverages the visual prior large datasets exhibit by evolving the geometry of the mesh via a 2D render loss, and a novel 3D projection loss, the Planar Projection. After each geometry iteration, our system performs topological corrections. Self-intersections are reduced following a geometrically motivated attenuation term, and resolution is added to required regions using a novel face scoring function. These steps alternate until convergence is achieved, yielding a high-quality manifold mesh. We evaluate ROAR on the notoriously messy yet popular dataset ShapeNet, and present ShapeROAR - a topologically valid yet still geometrically accurate version of ShapeNet. We compare our results to state-of-the-art reconstruction methods and demonstrate superior shape faithfulness, topological correctness, and triangulation quality. In addition, we demonstrate reconstructing a mesh from neural Signed Distance Functions (SDF), and achieve comparable Chamfer distance with much fewer SDF sampling operations than the commonly used Marching Cubes approach.

相關內容

Domain-specific languages for hardware can significantly enhance designer productivity, but sometimes at the cost of ease of verification. On the other hand, ISA specification languages are too static to be used during early stage design space exploration. We present PEak, an open-source hardware design and specification language, which aims to improve both design productivity and verification capability. PEak does this by providing a single source of truth for functional models, formal specifications, and RTL. PEak has been used in several academic projects, and PEak-generated RTL has been included in three fabricated hardware accelerators. In these projects, the formal capabilities of PEak were crucial for enabling both novel design space exploration techniques and automated compiler synthesis.

Decentralized and incomplete data sources are prevalent in real-world applications, posing a formidable challenge for causal inference. These sources cannot be consolidated into a single entity owing to privacy constraints, and the presence of missing values within them can potentially introduce bias to the causal estimands. We introduce a new approach for federated causal inference from incomplete data, enabling the estimation of causal effects from multiple decentralized and incomplete data sources. Our approach disentangles the loss function into multiple components, each corresponding to a specific data source with missing values. Our approach accounts for the missing data under the missing at random assumption, while also estimating higher-order statistics of the causal estimands. Our method recovers the conditional distribution of missing confounders given the observed confounders from the decentralized data sources to identify causal effects. Our framework estimates heterogeneous causal effects without the sharing of raw training data among sources, which helps to mitigate privacy risks. The efficacy of our approach is demonstrated through a collection of simulated and real-world instances, illustrating its potential and practicality.

Binary Code Embedding (BCE) has important applications in various reverse engineering tasks such as binary code similarity detection, type recovery, control-flow recovery and data-flow analysis. Recent studies have shown that the Transformer model can comprehend the semantics of binary code to support downstream tasks. However, existing models overlooked the prior knowledge of assembly language. In this paper, we propose a novel Transformer-based approach, namely kTrans, to generate knowledge-aware binary code embedding. By feeding explicit knowledge as additional inputs to the Transformer, and fusing implicit knowledge with a novel pre-training task, kTrans provides a new perspective to incorporating domain knowledge into a Transformer framework. We inspect the generated embeddings with outlier detection and visualization, and also apply kTrans to 3 downstream tasks: Binary Code Similarity Detection (BCSD), Function Type Recovery (FTR) and Indirect Call Recognition (ICR). Evaluation results show that kTrans can generate high-quality binary code embeddings, and outperforms state-of-the-art (SOTA) approaches on downstream tasks by 5.2%, 6.8%, and 12.6% respectively. kTrans is publicly available at: //github.com/Learner0x5a/kTrans-release

The advancement of aspect-based sentiment analysis (ABSA) has urged the lack of a user-friendly framework that can largely lower the difficulty of reproducing state-of-the-art ABSA performance, especially for beginners. To meet the demand, we present \our, a modularized framework built on PyTorch for reproducible ABSA. To facilitate ABSA research, PyABSA supports several ABSA subtasks, including aspect term extraction, aspect sentiment classification, and end-to-end aspect-based sentiment analysis. Concretely, PyABSA integrates 29 models and 26 datasets. With just a few lines of code, the result of a model on a specific dataset can be reproduced. With a modularized design, PyABSA can also be flexibly extended to considered models, datasets, and other related tasks. Besides, PyABSA highlights its data augmentation and annotation features, which significantly address data scarcity. All are welcome to have a try at \url{//github.com/yangheng95/PyABSA}.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司