亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bringing fairness to energy resource allocation remains a challenge, due to the complexity of system structures and economic interdependencies among users and system operators' decision-making. The rise of distributed energy resources has introduced more diverse heterogeneous user groups, surpassing the capabilities of traditional efficiency-oriented allocation schemes. Without explicitly bringing fairness to user-system interaction, this disparity often leads to disproportionate payments for certain user groups due to their utility formats or group sizes. Our paper addresses this challenge by formalizing the problem of fair energy resource allocation and introducing the framework for aggregators. This framework enables optimal fairness-efficiency trade-offs by selecting appropriate objectives in a principled way. By jointly optimizing over the total resources to allocate and individual allocations, our approach reveals optimized allocation schemes that lie on the Pareto front, balancing fairness and efficiency in resource allocation strategies.

相關內容

Despite the growing prevalence of large language model (LLM) architectures, a crucial concern persists regarding their energy and power consumption, which still lags far behind the remarkable energy efficiency of the human brain. Recent strides in spiking language models (LM) and transformer architectures aim to address this concern by harnessing the spiking activity of biological neurons to enhance energy/power efficiency. Doubling down on the principles of model quantization and energy efficiency, this paper proposes the development of a novel binary/ternary (1/1.58-bit) spiking LM architecture. Achieving scalability comparable to a deep spiking LM architecture is facilitated by an efficient knowledge distillation technique, wherein knowledge from a non-spiking full-precision "teacher" model is transferred to an extremely weight quantized spiking "student" LM. Our proposed model represents a significant advancement as the first-of-its-kind 1/1.58-bit spiking LM, and its performance is rigorously evaluated on multiple text classification tasks of the GLUE benchmark.

The malware booming is a cyberspace equal to the effect of climate change to ecosystems in terms of danger. In the case of significant investments in cybersecurity technologies and staff training, the global community has become locked up in the eternal war with cyber security threats. The multi-form and changing faces of malware are continuously pushing the boundaries of the cybersecurity practitioners employ various approaches like detection and mitigate in coping with this issue. Some old mannerisms like signature-based detection and behavioral analysis are slow to adapt to the speedy evolution of malware types. Consequently, this paper proposes the utilization of the Deep Learning Model, LSTM networks, and GANs to amplify malware detection accuracy and speed. A fast-growing, state-of-the-art technology that leverages raw bytestream-based data and deep learning architectures, the AI technology provides better accuracy and performance than the traditional methods. Integration of LSTM and GAN model is the technique that is used for the synthetic generation of data, leading to the expansion of the training datasets, and as a result, the detection accuracy is improved. The paper uses the VirusShare dataset which has more than one million unique samples of the malware as the training and evaluation set for the presented models. Through thorough data preparation including tokenization, augmentation, as well as model training, the LSTM and GAN models convey the better performance in the tasks compared to straight classifiers. The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense. Aside from that, the paper studies the output of ensemble learning and model fusion methods as a way to reduce biases and lift model complexity.

The framework of graded semantics uses graded monads to capture behavioural equivalences of varying granularity, for example as found on the linear-time/branching-time spectrum, over general system types. We describe a generic Spoiler-Duplicator game for graded semantics that is extracted from the given graded monad, and may be seen as playing out an equational proof; instances include standard pebble games for simulation and bisimulation as well as games for trace-like equivalences and coalgebraic behavioural equivalence. Considerations on an infinite variant of such games lead to a novel notion of infinite-depth graded semantics. Under reasonable restrictions, the infinite-depth graded semantics associated to a given graded equivalence can be characterized in terms of a determinization construction for coalgebras under the equivalence at hand.

The acquisition of physical artifacts not only involves transferring existing information into the digital ecosystem but also generates information as a process itself, underscoring the importance of meticulous management of FAIR data and metadata. In addition, the diversity of objects within the cultural heritage domain is reflected in a multitude of descriptive models. The digitization process expands the opportunities for exchange and joint utilization, granted that the descriptive schemas are made interoperable in advance. To achieve this goal, we propose a replicable workflow for metadata schema crosswalks that facilitates the preservation and accessibility of cultural heritage in the digital ecosystem. This work presents a methodology for metadata generation and management in the case study of the digital twin of the temporary exhibition "The Other Renaissance - Ulisse Aldrovandi and the Wonders of the World". The workflow delineates a systematic, step-by-step transformation of tabular data into RDF format, to enhance Linked Open Data. The methodology adopts the RDF Mapping Language (RML) technology for converting data to RDF with a human contribution involvement. This last aspect entails an interaction between digital humanists and domain experts through surveys leading to the abstraction and reformulation of domain-specific knowledge, to be exploited in the process of formalizing and converting information.

The neural combinatorial optimization (NCO) approach has shown great potential for solving routing problems without the requirement of expert knowledge. However, existing constructive NCO methods cannot directly solve large-scale instances, which significantly limits their application prospects. To address these crucial shortcomings, this work proposes a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural combinatorial optimization. In particular, we design a powerful yet lightweight instance-conditioned adaptation module for the NCO model to generate better solutions for instances across different scales. In addition, we develop an efficient three-stage reinforcement learning-based training scheme that enables the model to learn cross-scale features without any labeled optimal solution. Experimental results show that our proposed method is capable of obtaining excellent results with a very fast inference time in solving Traveling Salesman Problems (TSPs) and Capacitated Vehicle Routing Problems (CVRPs) across different scales. To the best of our knowledge, our model achieves state-of-the-art performance among all RL-based constructive methods for TSP and CVRP with up to 1,000 nodes.

In the context of the Internet of Things (IoT), reliable and energy-efficient provision of IoT applications has become critical. Equipping IoT systems with tools that enable a flexible, well-performing, and automated way of monitoring and managing IoT edge devices is an essential prerequisite. In current IoT systems, low-power edge appliances have been utilized in a way that can not be controlled and re-configured in a timely manner. Hence, conducting a trade-off solution between manageability, performance and design requirements are demanded. This paper introduces a novel approach for fine-grained monitoring and managing individual micro-services within low-power edge devices, which improves system reliability and energy efficiency. The proposed method enables operational flexibility for IoT edge devices by leveraging a modularization technique. Following a review of existing solutions for remote-managed IoT services, a detailed description of the suggested approach is presented. Also, to explore the essential design principles that must be considered in this approach, the suggested architecture is elaborated in detail. Finally, the advantages of the proposed solution to deal with disruptions are demonstrated in the proof of concept-based experiments.

Game theory has by now found numerous applications in various fields, including economics, industry, jurisprudence, and artificial intelligence, where each player only cares about its own interest in a noncooperative or cooperative manner, but without obvious malice to other players. However, in many practical applications, such as poker, chess, evader pursuing, drug interdiction, coast guard, cyber-security, and national defense, players often have apparently adversarial stances, that is, selfish actions of each player inevitably or intentionally inflict loss or wreak havoc on other players. Along this line, this paper provides a systematic survey on three main game models widely employed in adversarial games, i.e., zero-sum normal-form and extensive-form games, Stackelberg (security) games, zero-sum differential games, from an array of perspectives, including basic knowledge of game models, (approximate) equilibrium concepts, problem classifications, research frontiers, (approximate) optimal strategy seeking techniques, prevailing algorithms, and practical applications. Finally, promising future research directions are also discussed for relevant adversarial games.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司