亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Indiscriminate data poisoning attacks aim to decrease a model's test accuracy by injecting a small amount of corrupted training data. Despite significant interest, existing attacks remain relatively ineffective against modern machine learning (ML) architectures. In this work, we introduce the notion of model poisonability as a technical tool to explore the intrinsic limits of data poisoning attacks. We derive an easily computable threshold to establish and quantify a surprising phase transition phenomenon among popular ML models: data poisoning attacks become effective only when the poisoning ratio exceeds our threshold. Building on existing parameter corruption attacks and refining the Gradient Canceling attack, we perform extensive experiments to confirm our theoretical findings, test the predictability of our transition threshold, and significantly improve existing data poisoning baselines over a range of datasets and models. Our work highlights the critical role played by the poisoning ratio, and sheds new insights on existing empirical results, attacks and mitigation strategies in data poisoning.

相關內容

With the wide-spread application of machine learning models, it has become critical to study the potential data leakage of models trained on sensitive data. Recently, various membership inference (MI) attacks are proposed to determine if a sample was part of the training set or not. The question is whether these attacks can be reliably used in practice. We show that MI models frequently misclassify neighboring nonmember samples of a member sample as members. In other words, they have a high false positive rate on the subpopulations of the exact member samples that they can identify. We then showcase a practical application of MI attacks where this issue has a real-world repercussion. Here, MI attacks are used by an external auditor (investigator) to show to a judge/jury that an auditee unlawfully used sensitive data. Due to the high false positive rate of MI attacks on member's subpopulations, auditee challenges the credibility of the auditor by revealing the performance of the MI attacks on these subpopulations. We argue that current membership inference attacks can identify memorized subpopulations, but they cannot reliably identify which exact sample in the subpopulation was used during the training.

Multi-sensor fusion (MSF) is widely adopted for perception in autonomous vehicles (AVs), particularly for the task of 3D object detection with camera and LiDAR sensors. The rationale behind fusion is to capitalize on the strengths of each modality while mitigating their limitations. The exceptional and leading performance of fusion models has been demonstrated by advanced deep neural network (DNN)-based fusion techniques. Fusion models are also perceived as more robust to attacks compared to single-modal ones due to the redundant information in multiple modalities. In this work, we challenge this perspective with single-modal attacks that targets the camera modality, which is considered less significant in fusion but more affordable for attackers. We argue that the weakest link of fusion models depends on their most vulnerable modality, and propose an attack framework that targets advanced camera-LiDAR fusion models with adversarial patches. Our approach employs a two-stage optimization-based strategy that first comprehensively assesses vulnerable image areas under adversarial attacks, and then applies customized attack strategies to different fusion models, generating deployable patches. Evaluations with five state-of-the-art camera-LiDAR fusion models on a real-world dataset show that our attacks successfully compromise all models. Our approach can either reduce the mean average precision (mAP) of detection performance from 0.824 to 0.353 or degrade the detection score of the target object from 0.727 to 0.151 on average, demonstrating the effectiveness and practicality of our proposed attack framework.

We propose a novel clustering mechanism based on an incompatibility property between subsets of data that emerges during model training. This mechanism partitions the dataset into subsets that generalize only to themselves, i.e., training on one subset does not improve performance on the other subsets. Leveraging the interaction between the dataset and the training process, our clustering mechanism partitions datasets into clusters that are defined by--and therefore meaningful to--the objective of the training process. We apply our clustering mechanism to defend against data poisoning attacks, in which the attacker injects malicious poisoned data into the training dataset to affect the trained model's output. Our evaluation focuses on backdoor attacks against deep neural networks trained to perform image classification using the GTSRB and CIFAR-10 datasets. Our results show that (1) these attacks produce poisoned datasets in which the poisoned and clean data are incompatible and (2) our technique successfully identifies (and removes) the poisoned data. In an end-to-end evaluation, our defense reduces the attack success rate to below 1% on 134 out of 165 scenarios, with only a 2% drop in clean accuracy on CIFAR-10 and a negligible drop in clean accuracy on GTSRB.

Deep neural networks (DNN) have become a common sensing modality in autonomous systems as they allow for semantically perceiving the ambient environment given input images. Nevertheless, DNN models have proven to be vulnerable to adversarial digital and physical attacks. To mitigate this issue, several detection frameworks have been proposed to detect whether a single input image has been manipulated by adversarial digital noise or not. In our prior work, we proposed a real-time detector, called VisionGuard (VG), for adversarial physical attacks against single input images to DNN models. Building upon that work, we propose VisionGuard* (VG), which couples VG with majority-vote methods, to detect adversarial physical attacks in time-series image data, e.g., videos. This is motivated by autonomous systems applications where images are collected over time using onboard sensors for decision-making purposes. We emphasize that majority-vote mechanisms are quite common in autonomous system applications (among many other applications), as e.g., in autonomous driving stacks for object detection. In this paper, we investigate, both theoretically and experimentally, how this widely used mechanism can be leveraged to enhance the performance of adversarial detectors. We have evaluated VG* on videos of both clean and physically attacked traffic signs generated by a state-of-the-art robust physical attack. We provide extensive comparative experiments against detectors that have been designed originally for out-of-distribution data and digitally attacked images.

Nowadays, embedded devices are increasingly present in everyday life, often controlling and processing critical information. For this reason, these devices make use of cryptographic protocols. However, embedded devices are particularly vulnerable to attackers seeking to hijack their operation and extract sensitive information. Code-Reuse Attacks (CRAs) can steer the execution of a program to malicious outcomes, leveraging existing on-board code without direct access to the device memory. Moreover, Side-Channel Attacks (SCAs) may reveal secret information to the attacker based on mere observation of the device. In this paper, we are particularly concerned with thwarting CRAs and SCAs against embedded devices, while taking into account their resource limitations. Fine-grained code diversification can hinder CRAs by introducing uncertainty to the binary code; while software mechanisms can thwart timing or power SCAs. The resilience to either attack may come at the price of the overall efficiency. Moreover, a unified approach that preserves these mitigations against both CRAs and SCAs is not available. This is the main novelty of our approach, Secure Diversity by Construction (SecDivCon); a combinatorial compiler-based approach that combines software diversification against CRAs with software mitigations against SCAs. SecDivCon restricts the performance overhead in the generated code, offering a secure-by-design control on the performance-security trade-off. Our experiments show that SCA-aware diversification is effective against CRAs, while preserving SCA mitigation properties at a low, controllable overhead. Given the combinatorial nature of our approach, SecDivCon is suitable for small, performance-critical functions that are sensitive to SCAs. SecDivCon may be used as a building block to whole-program code diversification or in a re-randomization scheme of cryptographic code.

We introduce the problem of model-extraction attacks in cyber-physical systems in which an attacker attempts to estimate (or extract) the feedback controller of the system. Extracting (or estimating) the controller provides an unmatched edge to attackers since it allows them to predict the future control actions of the system and plan their attack accordingly. Hence, it is important to understand the ability of the attackers to perform such an attack. In this paper, we focus on the setting when a Deep Neural Network (DNN) controller is trained using Reinforcement Learning (RL) algorithms and is used to control a stochastic system. We play the role of the attacker that aims to estimate such an unknown DNN controller, and we propose a two-phase algorithm. In the first phase, also called the offline phase, the attacker uses side-channel information about the RL-reward function and the system dynamics to identify a set of candidate estimates of the unknown DNN. In the second phase, also called the online phase, the attacker observes the behavior of the unknown DNN and uses these observations to shortlist the set of final policy estimates. We provide theoretical analysis of the error between the unknown DNN and the estimated one. We also provide numerical results showing the effectiveness of the proposed algorithm.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司