亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of private distributed multi-party multiplication. It is well-established that Shamir secret-sharing coding strategies can enable perfect information-theoretic privacy in distributed computation via the celebrated algorithm of Ben Or, Goldwasser and Wigderson (the "BGW algorithm"). However, perfect privacy and accuracy require an honest majority, that is, $N \geq 2t+1$ compute nodes are required to ensure privacy against any $t$ colluding adversarial nodes. By allowing for some controlled amount of information leakage and approximate multiplication instead of exact multiplication, we study coding schemes for the setting where the number of honest nodes can be a minority, that is $N< 2t+1.$ We develop a tight characterization privacy-accuracy trade-off for cases where $N < 2t+1$ by measuring information leakage using {differential} privacy instead of perfect privacy, and using the mean squared error metric for accuracy. A novel technical aspect is an intricately layered noise distribution that merges ideas from differential privacy and Shamir secret-sharing at different layers.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · · CASE · Processing(編程語言) · 情景 ·
2023 年 11 月 14 日

We consider imperative programs that involve both randomization and pure nondeterminism. The central question is how to find a strategy resolving the pure nondeterminism such that the so-obtained determinized program satisfies a given quantitative specification, i.e., bounds on expected outcomes such as the expected final value of a program variable or the probability to terminate in a given set of states. We show how memoryless and deterministic (MD) strategies can be obtained in a semi-automatic fashion using deductive verification techniques. For loop-free programs, the MD strategies resulting from our weakest precondition-style framework are correct by construction. This extends to loopy programs, provided the loops are equipped with suitable loop invariants - just like in program verification. We show how our technique relates to the well-studied problem of obtaining strategies in countably infinite Markov decision processes with reachability-reward objectives. Finally, we apply our technique to several case studies.

Text-based misinformation permeates online discourses, yet evidence of people's ability to discern truth from such deceptive textual content is scarce. We analyze a novel TV game show data where conversations in a high-stake environment between individuals with conflicting objectives result in lies. We investigate the manifestation of potentially verifiable language cues of deception in the presence of objective truth, a distinguishing feature absent in previous text-based deception datasets. We show that there exists a class of detectors (algorithms) that have similar truth detection performance compared to human subjects, even when the former accesses only the language cues while the latter engages in conversations with complete access to all potential sources of cues (language and audio-visual). Our model, built on a large language model, employs a bottleneck framework to learn discernible cues to determine truth, an act of reasoning in which human subjects often perform poorly, even with incentives. Our model detects novel but accurate language cues in many cases where humans failed to detect deception, opening up the possibility of humans collaborating with algorithms and ameliorating their ability to detect the truth.

For generative AIs to be trustworthy, establishing transparent common grounding with humans is essential. As a preparation toward human-model common grounding, this study examines the process of model-model common grounding. In this context, common ground is defined as a cognitive framework shared among agents in communication, enabling the connection of symbols exchanged between agents to the meanings inherent in each agent. This connection is facilitated by a shared cognitive framework among the agents involved. In this research, we focus on the tangram naming task (TNT) as a testbed to examine the common-ground-building process. Unlike previous models designed for this task, our approach employs generative AIs to visualize the internal processes of the model. In this task, the sender constructs a metaphorical image of an abstract figure within the model and generates a detailed description based on this image. The receiver interprets the generated description from the partner by constructing another image and reconstructing the original abstract figure. Preliminary results from the study show an improvement in task performance beyond the chance level, indicating the effect of the common cognitive framework implemented in the models. Additionally, we observed that incremental backpropagations leveraging successful communication cases for a component of the model led to a statistically significant increase in performance. These results provide valuable insights into the mechanisms of common grounding made by generative AIs, improving human communication with the evolving intelligent machines in our future society.

Decentralized cryptocurrency networks, notably those with high energy demand, have faced significant criticism and subsequent regulatory scrutiny. Despite these concerns, policy interventions targeting cryptocurrency operations in the pursuit of sustainability have largely been ineffective. Some were abandoned for fear of jeopardizing innovation, whereas others failed due to the highly globalized nature of blockchain systems. In search of a more effective angle for energy policy measures, this study adopts a consumer-centric perspective, examining the sentiments of Nigerian cryptocurrency users (${n=158}$) toward Bitcoin's sustainability, a representative cryptocurrency known for its high electricity demand. Three main findings emerged: 1) Even among those self-identifying as highly knowledgeable, most considerably underestimated Bitcoin's electricity consumption. 2) Participants with a more accurate understanding of Bitcoin's energy demand were more inclined to support sustainability measures. 3) Most of this supportive cohort viewed private entities as the primary stakeholders for implementing such measures. Given these findings, we suggest that consumer education should be at the forefront of policy initiatives aimed at cryptocurrency sustainability.

Misinformation such as fake news and rumors is a serious threat on information ecosystems and public trust. The emergence of Large Language Models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double-edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emergent question is: how to utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM-generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM-generated misinformation.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司