The construction of modified equations is an important step in the backward error analysis of symplectic integrator for Hamiltonian systems. In the context of partial differential equations, the standard construction leads to modified equations with increasingly high frequencies which increase the regularity requirements on the analysis. In this paper, we consider the next order modified equations for the implicit midpoint rule applied to the semilinear wave equation to give a proof-of-concept of a new construction which works directly with the variational principle. We show that a carefully chosen change of coordinates yields a modified system which inherits its analytical properties from the original wave equation. Our method systematically exploits additional degrees of freedom by modifying the symplectic structure and the Hamiltonian together.
We propose a novel score-based particle method for solving the Landau equation in plasmas, that seamlessly integrates learning with structure-preserving particle methods [arXiv:1910.03080]. Building upon the Lagrangian viewpoint of the Landau equation, a central challenge stems from the nonlinear dependence of the velocity field on the density. Our primary innovation lies in recognizing that this nonlinearity is in the form of the score function, which can be approximated dynamically via techniques from score-matching. The resulting method inherits the conservation properties of the deterministic particle method while sidestepping the necessity for kernel density estimation in [arXiv:1910.03080]. This streamlines computation and enhances scalability with dimensionality. Furthermore, we provide a theoretical estimate by demonstrating that the KL divergence between our approximation and the true solution can be effectively controlled by the score-matching loss. Additionally, by adopting the flow map viewpoint, we derive an update formula for exact density computation. Extensive examples have been provided to show the efficiency of the method, including a physically relevant case of Coulomb interaction.
Randomized iterative methods, such as the Kaczmarz method and its variants, have gained growing attention due to their simplicity and efficiency in solving large-scale linear systems. Meanwhile, absolute value equations (AVE) have attracted increasing interest due to their connection with the linear complementarity problem. In this paper, we investigate the application of randomized iterative methods to generalized AVE (GAVE). Our approach differs from most existing works in that we tackle GAVE with non-square coefficient matrices. We establish more comprehensive sufficient and necessary conditions for characterizing the solvability of GAVE and propose precise error bound conditions. Furthermore, we introduce a flexible and efficient randomized iterative algorithmic framework for solving GAVE, which employs sampling matrices drawn from user-specified distributions. This framework is capable of encompassing many well-known methods, including the Picard iteration method and the randomized Kaczmarz method. Leveraging our findings on solvability and error bounds, we establish both almost sure convergence and linear convergence rates for this versatile algorithmic framework. Finally, we present numerical examples to illustrate the advantages of the new algorithms.
This overview is devoted to splitting methods, a class of numerical integrators intended for differential equations that can be subdivided into different problems easier to solve than the original system. Closely connected with this class of integrators are composition methods, in which one or several low-order schemes are composed to construct higher-order numerical approximations to the exact solution. We analyze in detail the order conditions that have to be satisfied by these classes of methods to achieve a given order, and provide some insight about their qualitative properties in connection with geometric numerical integration and the treatment of highly oscillatory problems. Since splitting methods have received considerable attention in the realm of partial differential equations, we also cover this subject in the present survey, with special attention to parabolic equations and their problems. An exhaustive list of methods of different orders is collected and tested on simple examples. Finally, some applications of splitting methods in different areas, ranging from celestial mechanics to statistics, are also provided.
This research aims to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators for these two parameters are strongly consistent. We estimate the diffusion parameter by using the quadratic variation processes. To test our results, we evaluate two data scenarios, complete and incomplete, with fixed values assigned to the three parameters. In the incomplete data scenario, we apply an Expectation Maximization algorithm.
This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.
Physics-informed neural networks (PINNs) have emerged as powerful tools for solving a wide range of partial differential equations (PDEs). However, despite their user-friendly interface and broad applicability, PINNs encounter challenges in accurately resolving PDEs, especially when dealing with singular cases that may lead to unsatisfactory local minima. To address these challenges and improve solution accuracy, we propose an innovative approach called Annealed Adaptive Importance Sampling (AAIS) for computing the discretized PDE residuals of the cost functions, inspired by the Expectation Maximization algorithm used in finite mixtures to mimic target density. Our objective is to approximate discretized PDE residuals by strategically sampling additional points in regions with elevated residuals, thus enhancing the effectiveness and accuracy of PINNs. Implemented together with a straightforward resampling strategy within PINNs, our AAIS algorithm demonstrates significant improvements in efficiency across a range of tested PDEs, even with limited training datasets. Moreover, our proposed AAIS-PINN method shows promising capabilities in solving high-dimensional singular PDEs. The adaptive sampling framework introduced here can be integrated into various PINN frameworks.
We propose a continuous approach for computing the pseudospectra of linear operators following a 'solve-then-discretize' strategy. Instead of taking a finite section approach or using a finite-dimensional matrix to approximate the operator of interest, the new method employs an operator analogue of the Lanczos process to work directly with operators and functions. The method is shown to be free of spectral pollution and spectral invisibility, fully adaptive, nearly optimal in accuracy, and well-conditioned. The advantages of the method are demonstrated by extensive numerical examples and comparison with the traditional method.
The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and5zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-B{\'e}nard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modelling, and precipitation forecasting).
Stability of the BDF methods of order up to five for parabolic equations can be established by the energy technique via Nevanlinna--Odeh multipliers. The nonexistence of Nevanlinna--Odeh multipliers makes the six-step BDF method special; however, the energy technique was recently extended by the authors in [Akrivis et al., SIAM J. Numer. Anal. \textbf{59} (2021) 2449--2472] and covers all six stable BDF methods. The seven-step BDF method is unstable for parabolic equations, since it is not even zero-stable. In this work, we construct and analyze a stable linear combination of two non zero-stable schemes, the seven-step BDF method and its shifted counterpart, referred to as WSBDF7 method. The stability regions of the WSBDF$q, q\leqslant 7$, with a weight $\vartheta\geqslant1$, increase as $\vartheta$ increases, are larger than the stability regions of the classical BDF$q,$ corresponding to $\vartheta=1$. We determine novel and suitable multipliers for the WSBDF7 method and establish stability for parabolic equations by the energy technique. The proposed approach is applicable for mean curvature flow, gradient flows, fractional equations and nonlinear equations.
We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.