How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide the first characterization of the Bayes-optimal limits of inference in this model. If the spike is rotation-invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical mechanics. We thus propose a novel AMP, inspired by the theory of Adaptive Thouless-Anderson-Palmer equations, which saturates the theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at remarkable universality properties.
We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts.
Analysis of high-dimensional data, where the number of covariates is larger than the sample size, is a topic of current interest. In such settings, an important goal is to estimate the signal level $\tau^2$ and noise level $\sigma^2$, i.e., to quantify how much variation in the response variable can be explained by the covariates, versus how much of the variation is left unexplained. This thesis considers the estimation of these quantities in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no responses $Y$. Our main research question is: how can one use the unlabeled data to better estimate $\tau^2$ and $\sigma^2$? We consider two frameworks: a linear regression model and a linear projection model in which linearity is not assumed. In the first framework, while linear regression is used, no sparsity assumptions on the coefficients are made. In the second framework, the linearity assumption is also relaxed and we aim to estimate the signal and noise levels defined by the linear projection. We first propose a naive estimator which is unbiased and consistent, under some assumptions, in both frameworks. We then show how the naive estimator can be improved by using zero-estimators, where a zero-estimator is a statistic arising from the unlabeled data, whose expected value is zero. In the first framework, we calculate the optimal zero-estimator improvement and discuss ways to approximate the optimal improvement. In the second framework, such optimality does no longer hold and we suggest two zero-estimators that improve the naive estimator although not necessarily optimally. Furthermore, we show that our approach reduces the variance for general initial estimators and we present an algorithm that potentially improves any initial estimator. Lastly, we consider four datasets and study the performance of our suggested methods.
We introduce a new paradigm for game theory -- Bayesian satisfaction. This novel approach is a synthesis of the idea of Bayesian rationality introduced by Aumann, and satisfaction games. The concept of Bayesian rationality for which, in part, Robert Aumann was awarded the Nobel Prize in 2005, is concerned with players in a game acting in their own best interest given a subjective knowledge of the other players' behaviours as represented by a probability distribution. Satisfaction games have emerged in the engineering literature as a way of modelling competitive interactions in resource allocation problems where players seek to attain a specified level of utility, rather than trying to maximise utility. In this paper, we explore the relationship between optimality in Aumann's sense (correlated equilibria), and satisfaction in games. We show that correlated equilibria in a satisfaction game represent stable outcomes in which no player can increase their probability of satisfaction by unilateral deviation from the specified behaviour. Thus, we propose a whole new class of equilibrium outcomes in satisfaction games which include existing notions of equilibria in such games. Iterative algorithms for computing such equilibria based on the existing ideas of regret matching are presented and interpreted within the satisfaction framework. Numerical examples of resource allocation are presented to illustrate the behaviour of these algorithms. A notable feature of these algorithms is that they almost always find equilibrium outcomes whereas existing approaches in satisfaction games may not.
Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.
This article aims at the lifetime prognosis of one-shot devices subject to competing causes of failure. Based on the failure count data recorded across several inspection times, statistical inference of the lifetime distribution is studied under the assumption of Lindley distribution. In the presence of outliers in the data set, the conventional maximum likelihood method or Bayesian estimation may fail to provide a good estimate. Therefore, robust estimation based on the weighted minimum density power divergence method is applied both in classical and Bayesian frameworks. Thereafter, the robustness behaviour of the estimators is studied through influence function analysis. Further, in density power divergence based estimation, we propose an optimization criterion for finding the tuning parameter which brings a trade-off between robustness and efficiency in estimation. The article also analyses when the cause of failure is missing for some of the devices. The analytical development has been restudied through a simulation study and a real data analysis where the data is extracted from the SEER database.
The Graphical House Allocation (GHA) problem asks: how can $n$ houses (each with a fixed non-negative value) be assigned to the vertices of an undirected graph $G$, so as to minimize the sum of absolute differences along the edges of $G$? This problem generalizes the classical Minimum Linear Arrangement problem, as well as the well-known House Allocation Problem from Economics. Recent work has studied the computational aspects of GHA and observed that the problem is NP-hard and inapproximable even on particularly simple classes of graphs, such as vertex disjoint unions of paths. However, the dependence of any approximations on the structural properties of the underlying graph had not been studied. In this work, we give a nearly complete characterization of the approximability of GHA. We present algorithms to approximate the optimal envy on general graphs, trees, planar graphs, bounded-degree graphs, and bounded-degree planar graphs. For each of these graph classes, we then prove matching lower bounds, showing that in each case, no significant improvement can be attained unless P = NP. We also present general approximation ratios as a function of structural parameters of the underlying graph, such as treewidth; these match the tight upper bounds in general, and are significantly better approximations for many natural subclasses of graphs. Finally, we investigate the special case of bounded-degree trees in some detail. We first refute a conjecture by Hosseini et al. [2023] about the structural properties of exact optimal allocations on binary trees by means of a counterexample on a depth-$3$ complete binary tree. This refutation, together with our hardness results on trees, might suggest that approximating the optimal envy even on complete binary trees is infeasible. Nevertheless, we present a linear-time algorithm that attains a $3$-approximation on complete binary trees.
The crossed random-effects model is widely used in applied statistics, finding applications in various fields such as longitudinal studies, e-commerce, and recommender systems, among others. However, these models encounter scalability challenges, as the computational time grows disproportionately with the number of data points, typically following a cubic root relationship (N^(3/2) or worse) with N. Our inspiration for addressing this issue comes from observing the recommender system employed by an online clothing retailer. Our dataset comprises over 700,000 clients, 5,000 items, and 5,000,000 measurements. When applying the maximum likelihood approach to fit crossed random effects, computational inefficiency becomes a significant concern, limiting the applicability of this approach in large-scale settings. To tackle the scalability issues, previous research by Ghosh et al. (2022a) and Ghosh et al. (2022b) has explored linear and logistic regression models utilizing fixed-effect features based on client and item variables, while incorporating random intercept terms for clients and items. In this study, we present a more generalized version of the problem, allowing random effect sizes/slopes. This extension enables us to capture the variability in effect size among both clients and items. Importantly, we have developed a scalable solution to address the aforementioned problem and have empirically demonstrated the consistency of our estimates. Specifically, as the number of data points increases, our estimates converge towards the true parameters. To validate our approach, we implement the proposed algorithm using Stitch Fix data.
Sampling-based algorithms are classical approaches to perform Bayesian inference in inverse problems. They provide estimators with the associated credibility intervals to quantify the uncertainty on the estimators. Although these methods hardly scale to high dimensional problems, they have recently been paired with optimization techniques, such as proximal and splitting approaches, to address this issue. Such approaches pave the way to distributed samplers, splitting computations to make inference more scalable and faster. We introduce a distributed Split Gibbs sampler (SGS) to efficiently solve such problems involving distributions with multiple smooth and non-smooth functions composed with linear operators. The proposed approach leverages a recent approximate augmentation technique reminiscent of primal-dual optimization methods. It is further combined with a block-coordinate approach to split the primal and dual variables into blocks, leading to a distributed block-coordinate SGS. The resulting algorithm exploits the hypergraph structure of the involved linear operators to efficiently distribute the variables over multiple workers under controlled communication costs. It accommodates several distributed architectures, such as the Single Program Multiple Data and client-server architectures. Experiments on a large image deblurring problem show the performance of the proposed approach to produce high quality estimates with credibility intervals in a small amount of time. Codes to reproduce the experiments are available online.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.