亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of designing contextual bandit algorithms in the ``cross-learning'' setting of Balseiro et al., where the learner observes the loss for the action they play in all possible contexts, not just the context of the current round. We specifically consider the setting where losses are chosen adversarially and contexts are sampled i.i.d. from an unknown distribution. In this setting, we resolve an open problem of Balseiro et al. by providing an efficient algorithm with a nearly tight (up to logarithmic factors) regret bound of $\widetilde{O}(\sqrt{TK})$, independent of the number of contexts. As a consequence, we obtain the first nearly tight regret bounds for the problems of learning to bid in first-price auctions (under unknown value distributions) and sleeping bandits with a stochastic action set. At the core of our algorithm is a novel technique for coordinating the execution of a learning algorithm over multiple epochs in such a way to remove correlations between estimation of the unknown distribution and the actions played by the algorithm. This technique may be of independent interest for other learning problems involving estimation of an unknown context distribution.

相關內容

We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

In this work, we present a high-order finite volume framework for the numerical simulation of shallow water flows. The method is designed to accurately capture complex dynamics inherent in shallow water systems, particularly suited for applications such as tsunami simulations. The arbitrarily high-order framework ensures precise representation of flow behaviors, crucial for simulating phenomena characterized by rapid changes and fine-scale features. Thanks to an {\it ad-hoc} reformulation in terms of production-destruction terms, the time integration ensures positivity preservation without any time-step restrictions, a vital attribute for physical consistency, especially in scenarios where negative water depth reconstructions could lead to unrealistic results. In order to introduce the preservation of general steady equilibria dictated by the underlying balance law, the high-order reconstruction and numerical flux are blended in a convex fashion with a well-balanced approximation, which is able to provide exact preservation of both static and moving equilibria. Through numerical experiments, we demonstrate the effectiveness and robustness of the proposed approach in capturing the intricate dynamics of shallow water flows, while preserving key physical properties essential for flood simulations.

Social-ecological systems (SES) research aims to understand the nature of social-ecological phenomena, to find effective ways to foster or manage conditions under which desirable phenomena, such as sustainable resource use, occur or to change conditions or reduce the negative consequences of undesirable phenomena, such as poverty traps. Challenges such as these are often addressed using dynamical systems models (DSM) or agent-based models (ABM). Both modeling approaches have strengths and weaknesses. DSM are praised for their analytical tractability and efficient exploration of asymptotic dynamics and bifurcation, which are enabled by reduced number and heterogeneity of system components. ABM allows representing heterogeneity, agency, learning and interactions of diverse agents within SES, but this also comes at a price such as inefficiency to explore asymptotic dynamics or bifurcations. In this paper we combine DSM and ABM to leverage strengths of each modeling technique and gain deeper insights into dynamics of a system. We start with an ABM and research questions that the ABM was not able to answer. Using results of the ABM analysis as inputs for DSM, we create a DSM. Stability and bifurcation analysis of the DSM gives partial answers to the research questions and direct attention to where additional details are needed. This informs further ABM analysis, prevents burdening the ABM with less important details and reveals new insights about system dynamics. The iterative process and dialogue between the ABM and DSM leads to more complete answers to research questions and surpasses insights provided by each of the models separately. We illustrate the procedure with the example of the emergence of poverty traps in an agricultural system with endogenously driven innovation.

Motivated by a recent work on a preconditioned MINRES for flipped linear systems in imaging, in this note we extend the scope of that research for including more precise boundary conditions such as reflective and anti-reflective ones. We prove spectral results for the matrix-sequences associated to the original problem, which justify the use of the MINRES in the current setting. The theoretical spectral analysis is supported by a wide variety of numerical experiments, concerning the visualization of the spectra of the original matrices in various ways. We also report numerical tests regarding the convergence speed and regularization features of the associated GMRES and MINRES methods. Conclusions and open problems end the present study.

In this article we aim to obtain the Fisher Riemann geodesics for nonparametric families of probability densities as a weak limit of the parametric case with increasing number of parameters.

Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.

Federated Learning is a machine learning approach that enables the training of a deep learning model among several participants with sensitive data that wish to share their own knowledge without compromising the privacy of their data. In this research, the authors employ a secured Federated Learning method with an additional layer of privacy and proposes a method for addressing the non-IID challenge. Moreover, differential privacy is compared with chaotic-based encryption as layer of privacy. The experimental approach assesses the performance of the federated deep learning model with differential privacy using both IID and non-IID data. In each experiment, the Federated Learning process improves the average performance metrics of the deep neural network, even in the case of non-IID data.

We present Cryptomite, a Python library of randomness extractor implementations. The library offers a range of two-source, seeded and deterministic randomness extractors, together with parameter calculation modules, making it easy to use and suitable for a variety of applications. We also present theoretical results, including new extractor constructions and improvements to existing extractor parameters. The extractor implementations are efficient in practice and tolerate input sizes of up to $2^{40} > 10^{12}$ bits. They are also numerically precise (implementing convolutions using the Number Theoretic Transform to avoid floating point arithmetic), making them well suited to cryptography. The algorithms and parameter calculation are described in detail, including illustrative code examples and performance benchmarking.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司