We study how to mitigate the effects of energy attacks in the batteryless Internet of Things (IoT). Battery-less IoT devices live and die with ambient energy, as they use energy harvesting to power their operation. They are employed in a multitude of applications, including safety-critical ones such as biomedical implants. Due to scarce energy intakes and limited energy buffers, their executions become intermittent, alternating periods of active operation with periods of recharging their energy buffers. Experimental evidence exists that shows how controlling ambient energy allows an attacker to steer a device execution in unintended ways: energy provisioning effectively becomes an attack vector. We design, implement, and evaluate a mitigation system for energy attacks. By taking into account the specific application requirements and the output of an attack detection module, we tune task execution rates and optimize energy management. This ensures continued application execution in the event of an energy attack. When a device is under attack, our solution ensures the execution of 23.3% additional application cycles compared to the baselines we consider and increases task schedulability by at least 21%, while enabling a 34% higher peripheral availability.
Biomedical Engineering's Internet of Medical Things (IoMT) is helping to improve the accuracy, dependability, and productivity of electronic equipment in the healthcare business. Real-time sensory data from patients may be delivered and subsequently analyzed through rapid development of wearable IoMT devices, such as neuro-stimulation devices with a range of functions. Data from the Internet of Things is gathered, analyzed, and stored in a single location. However, single-point failure, data manipulation, privacy difficulties, and other challenges might arise as a result of centralization. Due to its decentralized nature, blockchain (BC) can alleviate these issues. The viability of establishing a non-invasive remote neurostimulation system employing IoMT-based transcranial Direct Current Stimulation is investigated in this work (tDCS). A hardware-based prototype tDCS device has been developed that can be operated over the internet using an android application. Our suggested framework addresses the problems of IoMTBC-based systems, meets the criteria of real-time remote patient monitoring systems, and incorporates literature best practices in the relevant fields.
Nowadays, the increasing complexity of Advanced Driver Assistance Systems (ADAS) and Automated Driving (AD) means that the industry must move towards a scenario-based approach to validation rather than relying on established technology-based methods. This new focus also requires the validation process to take into account Safety of the Intended Functionality (SOTIF), as many scenarios may trigger hazardous vehicle behaviour. Thus, this work demonstrates how the integration of the SOTIF process within an existing validation tool suite can be achieved. The necessary adaptations are explained with accompanying examples to aid comprehension of the approach.
The online Data Quality Monitoring system (DQM) of the CMS electromagnetic calorimeter (ECAL) is a crucial operational tool that allows ECAL experts to quickly identify, localize, and diagnose a broad range of detector issues that would otherwise hinder physics-quality data taking. Although the existing ECAL DQM system has been continuously updated to respond to new problems, it remains one step behind newer and unforeseen issues. Using unsupervised deep learning, a real-time autoencoder-based anomaly detection system is developed that is able to detect ECAL anomalies unseen in past data. After accounting for spatial variations in the response of the ECAL and the temporal evolution of anomalies, the new system is able to efficiently detect anomalies while maintaining an estimated false discovery rate between $10^{-2}$ to $10^{-4}$, beating existing benchmarks by about two orders of magnitude. The real-world performance of the system is validated using anomalies found in 2018 and 2022 LHC collision data. Additionally, first results from deploying the autoencoder-based system in the CMS online DQM workflow for the ECAL barrel during Run 3 of the LHC are presented, showing its promising performance in detecting obscure issues that could have been missed in the existing DQM system.
Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario, where a detection model is required to be capable of detecting both known and unknown objects and incrementally learning newly introduced knowledge. Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns, whose performance relies heavily on the supervision of known objects. While they can detect the unknowns that exhibit similar features to the known objects, they suffer from a severe label bias problem that they tend to detect all regions (including unknown object regions) that are dissimilar to the known objects as part of the background. To eliminate the label bias, this paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects from raw pseudo labels generated by unsupervised region proposal methods. The resulting model can be further refined by a classification-free self-training method which iteratively extends pseudo unknown objects to the unlabeled regions. Experimental results show that our method 1) significantly outperforms the prior SOTA in detecting unknown objects while maintaining competitive performance of detecting known object classes on the MS COCO dataset, and 2) achieves better generalization ability on the LVIS and Objects365 datasets.
The Fisher-Kolmogorov equation is a diffusion-reaction PDE that is used to model the accumulation of prionic proteins, which are responsible for many different neurological disorders. Likely, the most important and studied misfolded protein in literature is the Amyloid-$\beta$, responsible for the onset of Alzheimer disease. Starting from medical images we construct a reduced-order model based on a graph brain connectome. The reaction coefficient of the proteins is modelled as a stochastic random field, taking into account all the many different underlying physical processes, which can hardly be measured. Its probability distribution is inferred by means of the Monte Carlo Markov Chain method applied to clinical data. The resulting model is patient-specific and can be employed for predicting the disease's future development. Forward uncertainty quantification techniques (Monte Carlo and sparse grid stochastic collocation) are applied with the aim of quantifying the impact of the variability of the reaction coefficient on the progression of protein accumulation within the next 20 years.
Real-time perception and motion planning are two crucial tasks for autonomous driving. While there are many research works focused on improving the performance of perception and motion planning individually, it is still not clear how a perception error may adversely impact the motion planning results. In this work, we propose a joint simulation framework with LiDAR-based perception and motion planning for real-time automated driving. Taking the sensor input from the CARLA simulator with additive noise, a LiDAR perception system is designed to detect and track all surrounding vehicles and to provide precise orientation and velocity information. Next, we introduce a new collision bound representation that relaxes the communication cost between the perception module and the motion planner. A novel collision checking algorithm is implemented using line intersection checking that is more efficient for long distance range in comparing to the traditional method of occupancy grid. We evaluate the joint simulation framework in CARLA for urban driving scenarios. Experiments show that our proposed automated driving system can execute at 25 Hz, which meets the real-time requirement. The LiDAR perception system has high accuracy within 20 meters when evaluated with the ground truth. The motion planning results in consistent safe distance keeping when tested in CARLA urban driving scenarios.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.