亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a formally verified quantifier elimination (QE) algorithm for first-order real arithmetic by linear and quadratic virtual substitution (VS) in Isabelle/HOL. The Tarski-Seidenberg theorem established that the first-order logic of real arithmetic is decidable by QE. However, in practice, QE algorithms are highly complicated and often combine multiple methods for performance. VS is a practically successful method for QE that targets formulas with low-degree polynomials. To our knowledge, this is the first work to formalize VS for quadratic real arithmetic including inequalities. The proofs necessitate various contributions to the existing multivariate polynomial libraries in Isabelle/HOL. Our framework is modularized and easily expandable (to facilitate integrating future optimizations), and could serve as a basis for developing practical general-purpose QE algorithms. Further, as our formalization is designed with practicality in mind, we export our development to SML and test the resulting code on 378 benchmarks from the literature, comparing to Redlog, Z3, Wolfram Engine, and SMT-RAT. This identified inconsistencies in some tools, underscoring the significance of a verified approach for the intricacies of real arithmetic.

相關內容

One of the key problems in tensor completion is the number of uniformly random sample entries required for recovery guarantee. The main aim of this paper is to study $n_1 \times n_2 \times n_3$ third-order tensor completion based on transformed tensor singular value decomposition, and provide a bound on the number of required sample entries. Our approach is to make use of the multi-rank of the underlying tensor instead of its tubal rank in the bound. In numerical experiments on synthetic and imaging data sets, we demonstrate the effectiveness of our proposed bound for the number of sample entries. Moreover, our theoretical results are valid to any unitary transformation applied to $n_3$-dimension under transformed tensor singular value decomposition.

In model extraction attacks, adversaries can steal a machine learning model exposed via a public API by repeatedly querying it and adjusting their own model based on obtained predictions. To prevent model stealing, existing defenses focus on detecting malicious queries, truncating, or distorting outputs, thus necessarily introducing a tradeoff between robustness and model utility for legitimate users. Instead, we propose to impede model extraction by requiring users to complete a proof-of-work before they can read the model's predictions. This deters attackers by greatly increasing (even up to 100x) the computational effort needed to leverage query access for model extraction. Since we calibrate the effort required to complete the proof-of-work to each query, this only introduces a slight overhead for regular users (up to 2x). To achieve this, our calibration applies tools from differential privacy to measure the information revealed by a query. Our method requires no modification of the victim model and can be applied by machine learning practitioners to guard their publicly exposed models against being easily stolen.

We consider a parallel server system with so-called cancel-on-completion redundancy. There are $n$ servers and multiple job classes $j$. An arriving class $j$ job consists of $d_j$ components, placed on a randomly selected subset of servers; the job service is complete as soon as $k_j$ components out of $d_j$ (with $k_j \le d_j$) complete their service, at which point the unfinished service of all remaining $d_j-k_j$ components is canceled. The system is in general non-work-conserving, in the sense that the average amount of new workload added to the system by an arriving class $j$ job is not defined a priori -- it depends on the system state at the time of arrival. This poses the main challenge for the system analysis. For the system with a fixed number of servers $n$ our main results include: the stability properties; the property that the stationary distributions of the relative server workloads remain tight, uniformly in the system load. We also consider the mean-field asymptotic regime when $n\to\infty$ while each job class arrival rate per server remains constant. The main question we address here is: under which conditions the steady-state asymptotic independence (SSAI) of server workloads holds, and in particular when the SSAI for the full range of loads (SSAI-FRL) holds. (Informally, SSAI-FRL means that SSAI holds for any system load less than $1$.) We obtain sufficient conditions for SSAI and SSAI-FRL. In particular, we prove that SSAI-FRL holds in the important special case when job components of each class $j$ are i.i.d. with an increasing-hazard-rate distribution.

The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.

The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating their success with videos has proven challenging. Sets of high-quality facial videos are lacking, and working with videos introduces a fundamental barrier to overcome - temporal coherency. We propose that this barrier is largely artificial. The source video is already temporally coherent, and deviations from this state arise in part due to careless treatment of individual components in the editing pipeline. We leverage the natural alignment of StyleGAN and the tendency of neural networks to learn low frequency functions, and demonstrate that they provide a strongly consistent prior. We draw on these insights and propose a framework for semantic editing of faces in videos, demonstrating significant improvements over the current state-of-the-art. Our method produces meaningful face manipulations, maintains a higher degree of temporal consistency, and can be applied to challenging, high quality, talking head videos which current methods struggle with.

We study an elementary path problem which appears in the pricing step of a column generation scheme solving the kidney exchange problem. The latter aims at finding exchanges of donations in a pool of patients and donors of kidney transplantations. Informally, the problem is to determine a set of cycles and chains of limited length maximizing a medical benefit in a directed graph. The cycle formulation, a large-scale model of the problem restricted to cycles of donation, is efficiently solved via branch-and-price. When including chains of donation however, the pricing subproblem becomes NP-hard. This article proposes a new complete column generation scheme that takes into account these chains initiated by altruistic donors. The development of non-exact dynamic approaches for the pricing problem, the NG-route relaxation and the color coding heuristic, leads to an efficient column generation process.

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.

We propose a straightforward vocabulary adaptation scheme to extend the language capacity of multilingual machine translation models, paving the way towards efficient continual learning for multilingual machine translation. Our approach is suitable for large-scale datasets, applies to distant languages with unseen scripts, incurs only minor degradation on the translation performance for the original language pairs and provides competitive performance even in the case where we only possess monolingual data for the new languages.

For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.

In this paper, we propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for visual object tracking. The dataset consists of 50 videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and possibly train better deep learning architectures (avoiding/reducing augmentation, which may not reflect realistic real world behavior). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further categorize the test sequences with different attributes and present a thorough quantitative and qualitative evaluation. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of most trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long term tracking.

北京阿比特科技有限公司