This paper presents LightLM, a lightweight Transformer-based language model for generative recommendation. While Transformer-based generative modeling has gained importance in various AI sub-fields such as NLP and vision, generative recommendation is still in its infancy due to its unique demand on personalized generative modeling. Existing works on generative recommendation often use NLP-oriented Transformer architectures such as T5, GPT, LLaMA and M6, which are heavy-weight and are not specifically designed for recommendation tasks. LightLM tackles the issue by introducing a light-weight deep and narrow Transformer architecture, which is specifically tailored for direct generation of recommendation items. This structure is especially apt for straightforward generative recommendation and stems from the observation that language model does not have to be too wide for this task, as the input predominantly consists of short tokens that are well-suited for the model's capacity. We also show that our devised user and item ID indexing methods, i.e., Spectral Collaborative Indexing (SCI) and Graph Collaborative Indexing (GCI), enables the deep and narrow Transformer architecture to outperform large-scale language models for recommendation. Besides, to address the hallucination problem of generating items as output, we propose the constrained generation process for generative recommenders. Experiments on real-world datasets show that LightLM outperforms various competitive baselines in terms of both recommendation accuracy and efficiency. The code can be found at //github.com/dongyuanjushi/LightLM.
Prompt recently have become an effective linguistic tool on utilizing the pre-trained language models. However, in few-shot scenarios, subtle changes of prompt's design always make the result widely different, and the prompt design is also easy to overfit the current limited samples. To alleviate this, we explore how to utilize suitable contrastive samples and multiple contrastive learning methods to realize a more robust prompt's representation. Therefore, the contrastive prompt model ConsPrompt combining with prompt encoding network, contrastive sampling modules, and contrastive scoring modules are introduced to realize differential contrastive learning. Our results exhibit the state-of-the-art performance in different few-shot settings, and the ablation experiments also certificate the effectiveness in utilizing multi-degree contrastive learning in prompt-based fine-tuning process.
This work presents HeadArtist for 3D head generation from text descriptions. With a landmark-guided ControlNet serving as the generative prior, we come up with an efficient pipeline that optimizes a parameterized 3D head model under the supervision of the prior distillation itself. We call such a process self score distillation (SSD). In detail, given a sampled camera pose, we first render an image and its corresponding landmarks from the head model, and add some particular level of noise onto the image. The noisy image, landmarks, and text condition are then fed into the frozen ControlNet twice for noise prediction. Two different classifier-free guidance (CFG) weights are applied during these two predictions, and the prediction difference offers a direction on how the rendered image can better match the text of interest. Experimental results suggest that our approach delivers high-quality 3D head sculptures with adequate geometry and photorealistic appearance, significantly outperforming state-ofthe-art methods. We also show that the same pipeline well supports editing the generated heads, including both geometry deformation and appearance change.
A new method called the Survival Beran-based Neural Importance Model (SurvBeNIM) is proposed. It aims to explain predictions of machine learning survival models, which are in the form of survival or cumulative hazard functions. The main idea behind SurvBeNIM is to extend the Beran estimator by incorporating the importance functions into its kernels and by implementing these importance functions as a set of neural networks which are jointly trained in an end-to-end manner. Two strategies of using and training the whole neural network implementing SurvBeNIM are proposed. The first one explains a single instance, and the neural network is trained for each explained instance. According to the second strategy, the neural network only learns once on all instances from the dataset and on all generated instances. Then the neural network is used to explain any instance in a dataset domain. Various numerical experiments compare the method with different existing explanation methods. A code implementing the proposed method is publicly available.
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at //github.com/EQ-bench/EQ-Bench and a leaderboard at //www.eqbench.com
Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model's generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model.
This paper presents GIR, a 3D Gaussian Inverse Rendering method for relightable scene factorization. Compared to existing methods leveraging discrete meshes or neural implicit fields for inverse rendering, our method utilizes 3D Gaussians to estimate the material properties, illumination, and geometry of an object from multi-view images. Our study is motivated by the evidence showing that 3D Gaussian is a more promising backbone than neural fields in terms of performance, versatility, and efficiency. In this paper, we aim to answer the question: ``How can 3D Gaussian be applied to improve the performance of inverse rendering?'' To address the complexity of estimating normals based on discrete and often in-homogeneous distributed 3D Gaussian representations, we proposed an efficient self-regularization method that facilitates the modeling of surface normals without the need for additional supervision. To reconstruct indirect illumination, we propose an approach that simulates ray tracing. Extensive experiments demonstrate our proposed GIR's superior performance over existing methods across multiple tasks on a variety of widely used datasets in inverse rendering. This substantiates its efficacy and broad applicability, highlighting its potential as an influential tool in relighting and reconstruction. Project page: //3dgir.github.io
Large Language Models (LLMs) presents significant priority in text understanding and generation. However, LLMs suffer from the risk of generating harmful contents especially while being employed to applications. There are several black-box attack methods, such as Prompt Attack, which can change the behaviour of LLMs and induce LLMs to generate unexpected answers with harmful contents. Researchers are interested in Prompt Attack and Defense with LLMs, while there is no publicly available dataset with high successful attacking rate to evaluate the abilities of defending prompt attack. In this paper, we introduce a pipeline to construct high-quality prompt attack samples, along with a Chinese prompt attack dataset called CPAD. Our prompts aim to induce LLMs to generate unexpected outputs with several carefully designed prompt attack templates and widely concerned attacking contents. Different from previous datasets involving safety estimation, we construct the prompts considering three dimensions: contents, attacking methods and goals. Especially, the attacking goals indicate the behaviour expected after successfully attacking the LLMs, thus the responses can be easily evaluated and analysed. We run several popular Chinese LLMs on our dataset, and the results show that our prompts are significantly harmful to LLMs, with around 70% attack success rate to GPT-3.5. CPAD is publicly available at //github.com/liuchengyuan123/CPAD.
This paper presents CyberSecEval, a comprehensive benchmark developed to help bolster the cybersecurity of Large Language Models (LLMs) employed as coding assistants. As what we believe to be the most extensive unified cybersecurity safety benchmark to date, CyberSecEval provides a thorough evaluation of LLMs in two crucial security domains: their propensity to generate insecure code and their level of compliance when asked to assist in cyberattacks. Through a case study involving seven models from the Llama 2, Code Llama, and OpenAI GPT large language model families, CyberSecEval effectively pinpointed key cybersecurity risks. More importantly, it offered practical insights for refining these models. A significant observation from the study was the tendency of more advanced models to suggest insecure code, highlighting the critical need for integrating security considerations in the development of sophisticated LLMs. CyberSecEval, with its automated test case generation and evaluation pipeline covers a broad scope and equips LLM designers and researchers with a tool to broadly measure and enhance the cybersecurity safety properties of LLMs, contributing to the development of more secure AI systems.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.