亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have shown impressive abilities in various tasks. However, fundamentally improving them depends on high-quality datasets or computationally expensive fine-tuning. On the contrary, humans can easily improve themselves by self-thinking and memory, without external resources. In this paper, we propose a framework, MoT, to let the LLM self-improve through Memory-of-Thought, without annotated datasets and parameter updates. Specifically, MoT is divided into two stages: 1. before the test stage, the LLM pre-thinks on the unlabeled dataset and saves the high-confidence thoughts as external memory; 2. During the test stage, given a test question, the LLM recalls relevant memory to help itself reason and answer it. Experimental results show that MoT can help ChatGPT significantly improve its abilities in arithmetic reasoning, commonsense reasoning, factual reasoning, and natural language inference. Further analyses show that each component contributes critically to the improvements and MoT can lead to consistent improvements across various CoT methods and LLMs.

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

Large Language Models (LLMs) have proven effective at In-Context Learning (ICL), an ability that allows them to create predictors from labeled examples. Few studies have explored the interplay between ICL and specific properties of functions it attempts to approximate. In our study, we use a formal framework to explore ICL and propose a new task of approximating functions with varying number of minima. We implement a method that allows for producing functions with given inputs as minima. We find that increasing the number of minima degrades ICL performance. At the same time, our evaluation shows that ICL outperforms 2-layer Neural Network (2NN) model. Furthermore, ICL learns faster than 2NN in all settings. We validate the findings through a set of few-shot experiments across various hyperparameter configurations.

Although Federated Learning (FL) is promising to enable collaborative learning among Artificial Intelligence of Things (AIoT) devices, it suffers from the problem of low classification performance due to various heterogeneity factors (e.g., computing capacity, memory size) of devices and uncertain operating environments. To address these issues, this paper introduces an effective FL approach named AdaptiveFL based on a novel fine-grained width-wise model pruning strategy, which can generate various heterogeneous local models for heterogeneous AIoT devices. By using our proposed reinforcement learning-based device selection mechanism, AdaptiveFL can adaptively dispatch suitable heterogeneous models to corresponding AIoT devices on the fly based on their available resources for local training. Experimental results show that, compared to state-of-the-art methods, AdaptiveFL can achieve up to 16.83% inference improvements for both IID and non-IID scenarios.

Due to its advantages in resource constraint scenarios, Split Federated Learning (SFL) is promising in AIoT systems. However, due to data heterogeneity and stragglers, SFL suffers from the challenges of low inference accuracy and low efficiency. To address these issues, this paper presents a novel SFL approach, named Sliding Split Federated Learning (S$^2$FL), which adopts an adaptive sliding model split strategy and a data balance-based training mechanism. By dynamically dispatching different model portions to AIoT devices according to their computing capability, S$^2$FL can alleviate the low training efficiency caused by stragglers. By combining features uploaded by devices with different data distributions to generate multiple larger batches with a uniform distribution for back-propagation, S$^2$FL can alleviate the performance degradation caused by data heterogeneity. Experimental results demonstrate that, compared to conventional SFL, S$^2$FL can achieve up to 16.5\% inference accuracy improvement and 3.54X training acceleration.

Bayesian Neural Networks (BNN) have emerged as a crucial approach for interpreting ML predictions. By sampling from the posterior distribution, data scientists may estimate the uncertainty of an inference. Unfortunately many inference samples are often needed, the overhead of which greatly hinder BNN's wide adoption. To mitigate this, previous work proposed propagating the first and second moments of the posterior directly through the network. However, on its own this method is even slower than sampling, so the propagated variance needs to be approximated such as assuming independence between neural nodes. The resulting trade-off between quality and inference time did not match even plain Monte Carlo sampling. Our contribution is a more principled variance propagation framework based on "spiked covariance matrices", which smoothly interpolates between quality and inference time. This is made possible by a new fast algorithm for updating a diagonal-plus-low-rank matrix approximation under various operations. We tested our algorithm against sampling based MC Dropout and Variational Inference on a number of downstream uncertainty themed tasks, such as calibration and out-of-distribution testing. We find that Favour is as fast as performing 2-3 inference samples, while matching the performance of 10-100 samples. In summary, this work enables the use of BNN in the realm of performance critical tasks where they have previously been out of reach.

Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司