We investigate the problem of producing diverse solutions to an image super-resolution problem. From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which requires the definition of a prior distribution on the high-resolution images. In this work, we propose to use a pretrained hierarchical variational autoencoder (HVAE) as a prior. We train a lightweight stochastic encoder to encode low-resolution images in the latent space of a pretrained HVAE. At inference, we combine the low-resolution encoder and the pretrained generative model to super-resolve an image. We demonstrate on the task of face super-resolution that our method provides an advantageous trade-off between the computational efficiency of conditional normalizing flows techniques and the sample quality of diffusion based methods.
Full waveform inversion (FWI) is a large-scale nonlinear ill-posed problem for which computationally expensive Newton-type methods can become trapped in undesirable local minima, particularly when the initial model lacks a low-wavenumber component and the recorded data lacks low-frequency content. A modification to the Gauss-Newton (GN) method is proposed to address these issues. The standard GN system for multisource multireceiver FWI is reformulated into an equivalent matrix equation form, with the solution becoming a diagonal matrix rather than a vector as in the standard system. The search direction is transformed from a vector to a matrix by relaxing the diagonality constraint, effectively adding a degree of freedom to the subsurface offset axis. The relaxed system can be explicitly solved with only the inversion of two small matrices that deblur the data residual matrix along the source and receiver dimensions, which simplifies the inversion of the Hessian matrix. When used to solve the extended source FWI objective function, the Extended GN (EGN) method integrates the benefits of both model and source extension. The EGN method effectively combines the computational effectiveness of the reduced FWI method with the robustness characteristics of extended formulations and offers a promising solution for addressing the challenges of FWI. It bridges the gap between these extended formulations and the reduced FWI method, enhancing inversion robustness while maintaining computational efficiency. The robustness and stability of the EGN algorithm for waveform inversion are demonstrated numerically.
We propose two novel extensions of the Wyner common information optimization problem. Each relaxes one fundamental constraints in Wyner's formulation. The \textit{Variational Wyner Common Information} relaxes the matching constraint to the known distribution while imposing conditional independence to the feasible solution set. We derive a tight surrogate upper bound of the obtained unconstrained Lagrangian via the theory of variational inference, which can be minimized efficiently. Our solver caters to problems where conditional independence holds with significantly reduced computation complexity; On the other hand, the \textit{Bipartite Wyner Common Information} relaxes the conditional independence constraint whereas the matching condition is enforced on the feasible set. By leveraging the difference-of-convex structure of the formulated optimization problem, we show that our solver is resilient to conditional dependent sources. Both solvers are provably convergent (local stationary points), and empirically, they obtain more accurate solutions to Wyner's formulation with substantially less runtime. Moreover, them can be extended to unknown distribution settings by parameterizing the common randomness as a member of the exponential family of distributions. Our approaches apply to multi-modal clustering problems, where multiple modalities of observations come from the same cluster. Empirically, our solvers outperform the state-of-the-art multi-modal clustering algorithms with significantly improved performance.
Disjoint paths problems are among the most prominent problems in combinatorial optimization. The edge- as well as vertex-disjoint paths problem, are NP-complete on directed and undirected graphs. But on undirected graphs, Robertson and Seymour (Graph Minors XIII) developed an algorithm for the vertex- and the edge-disjoint paths problem that runs in cubic time for every fixed number $p$ of terminal pairs, i.e. they proved that the problem is fixed-parameter tractable on undirected graphs. On directed graphs, Fortune, Hopcroft, and Wyllie proved that both problems are NP-complete already for $p=2$ terminal pairs. In this paper, we study the edge-disjoint paths problem (EDPP) on Eulerian digraphs, a problem that has received significant attention in the literature. Marx (Marx 2004) proved that the Eulerian EDPP is NP-complete even on structurally very simple Eulerian digraphs. On the positive side, polynomial time algorithms are known only for very restricted cases, such as $p\leq 3$ or where the demand graph is a union of two stars (see e.g. Ibaraki, Poljak 1991; Frank 1988; Frank, Ibaraki, Nagamochi 1995). The question of which values of $p$ the edge-disjoint paths problem can be solved in polynomial time on Eulerian digraphs has already been raised by Frank, Ibaraki, and Nagamochi (1995) almost 30 years ago. But despite considerable effort, the complexity of the problem is still wide open and is considered to be the main open problem in this area (see Chapter 4 of Bang-Jensen, Gutin 2018 for a recent survey). In this paper, we solve this long-open problem by showing that the Edge-Disjoint Paths Problem is fixed-parameter tractable on Eulerian digraphs in general (parameterized by the number of terminal pairs). The algorithm itself is reasonably simple but the proof of its correctness requires a deep structural analysis of Eulerian digraphs.
Multi-objective optimization problems (MOPs) necessitate the simultaneous optimization of multiple objectives. Numerous studies have demonstrated that evolutionary computation is a promising paradigm for solving complex MOPs, which involve optimization problems with large-scale decision variables, many objectives, and expensive evaluation functions. However, existing multi-objective evolutionary algorithms (MOEAs) encounter significant challenges in generating high-quality populations when solving diverse complex MOPs. Specifically, the distinct requirements and constraints of the population result in the inefficiency or even incompetence of MOEAs in addressing various complex MOPs. Therefore, this paper proposes the concept of pre-evolving for MOEAs to generate high-quality populations for diverse complex MOPs. Drawing inspiration from the classical transformer architecture, we devise dimension embedding and objective encoding techniques to configure the pre-evolved model (PEM). The PEM is pre-evolved on a substantial number of existing MOPs. Subsequently, when fine-evolving on new complex MOPs, the PEM transforms the population into the next generation to approximate the Pareto-optimal front. Furthermore, it utilizes evaluations on new solutions to iteratively update the PEM for subsequent generations, thereby efficiently solving various complex MOPs. Experimental results demonstrate that the PEM outperforms state-of-the-art MOEAs on a range of complex MOPs.
We present a fully-integrated lattice Boltzmann (LB) method for fluid--structure interaction (FSI) simulations that efficiently models deformable solids in complex suspensions and active systems. Our Eulerian method (LBRMT) couples finite-strain solids to the LB fluid on the same fixed computational grid with the reference map technique (RMT). An integral part of the LBRMT is a new LB boundary condition for moving deformable interfaces across different densities. With this fully Eulerian solid--fluid coupling, the LBRMT is well-suited for parallelization and simulating multi-body contact without remeshing or extra meshes. We validate its accuracy via a benchmark of a deformable solid in a lid-driven cavity, then showcase its versatility through examples of soft solids rotating and settling. With simulations of complex suspensions mixing, we highlight potentials of the LBRMT for studying collective behavior in soft matter and biofluid dynamics.
Social networks are the fabric of society and the subject of frequent visual analysis. Closed triads represent triangular relationships between three people in a social network and are significant for understanding inherent interconnections and influence within the network. The most common methods for representing social networks (node-link diagrams and adjacency matrices) are not optimal for understanding triangles. We propose extending the adjacency matrix form to 3D for better visualization of network triads. We design a 3D matrix reordering technique and implement an immersive interactive system to assist in visualizing and analyzing closed triads in social networks. A user study and usage scenarios demonstrate that our method provides substantial added value over node-link diagrams in improving the efficiency and accuracy of manipulating and understanding the social network triads.
Routing represents a pivotal concern in the context of Wireless Sensor Networks (WSN) owing to its divergence from traditional network routing paradigms. The inherent dynamism of the WSN environment, coupled with the scarcity of available resources, engenders considerable challenges for industry and academia alike in devising efficient routing strategies. Addressing these challenges, a viable recourse lies in applying heuristic search methodologies to ascertain the most optimal path in WSNs. Ant Colony Optimization (ACO) is a well-established heuristic algorithm that has demonstrated notable advancements in routing contexts. This paper introduces a modify routing protocols based on Ant colony optimization. In these protocols, we incorporate the inverse of the distance between nodes and their neighbours in the probability equations of ACO along with considering pheromone levels and residual energy. These formulation modifications facilitate the selection of the most suitable candidate for the subsequent hop, effectively minimizing the average energy consumption across all nodes in each iteration. Furthermore, in this protocol, we iteratively fine-tune ACO's parameter values based on the outcomes of several experimental trials. The experimental analysis is conducted through a diverse set of network topologies, and the results are subjected to comparison against well-established ACO algorithm and routing protocols. The efficacy of the proposed protocol is assessed based on various performance metrics, encompassing throughput, energy consumption, network lifetime, energy consumption, the extent of data transferred over the network, and the length of paths traversed by packets. These metrics collectively provide a comprehensive evaluation of the performance attainments of the routing protocols.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.