亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses text-supervised semantic segmentation, aiming to learn a model capable of segmenting arbitrary visual concepts within images by using only image-text pairs without dense annotations. Existing methods have demonstrated that contrastive learning on image-text pairs effectively aligns visual segments with the meanings of texts. We notice that there is a discrepancy between text alignment and semantic segmentation: A text often consists of multiple semantic concepts, whereas semantic segmentation strives to create semantically homogeneous segments. To address this issue, we propose a novel framework, Image-Text Co-Decomposition (CoDe), where the paired image and text are jointly decomposed into a set of image regions and a set of word segments, respectively, and contrastive learning is developed to enforce region-word alignment. To work with a vision-language model, we present a prompt learning mechanism that derives an extra representation to highlight an image segment or a word segment of interest, with which more effective features can be extracted from that segment. Comprehensive experimental results demonstrate that our method performs favorably against existing text-supervised semantic segmentation methods on six benchmark datasets.

相關內容

This paper presents a novel approach to the digital signing of electronic documents through the use of a camera-based interaction system, single-finger tracking for sign recognition, and multi commands executing hand gestures. The proposed solution, referred to as "Air Signature," involves writing the signature in front of the camera, rather than relying on traditional methods such as mouse drawing or physically signing on paper and showing it to a web camera. The goal is to develop a state-of-the-art method for detecting and tracking gestures and objects in real-time. The proposed methods include applying existing gesture recognition and object tracking systems, improving accuracy through smoothing and line drawing, and maintaining continuity during fast finger movements. An evaluation of the fingertip detection, sketching, and overall signing process is performed to assess the effectiveness of the proposed solution. The secondary objective of this research is to develop a model that can effectively recognize the unique signature of a user. This type of signature can be verified by neural cores that analyze the movement, speed, and stroke pixels of the signing in real time. The neural cores use machine learning algorithms to match air signatures to the individual's stored signatures, providing a secure and efficient method of verification. Our proposed System does not require sensors or any hardware other than the camera.

We explore how interaction with large language models (LLMs) can give rise to emergent behaviors, empowering players to participate in the evolution of game narratives. Our testbed is a text-adventure game in which players attempt to solve a mystery under a fixed narrative premise, but can freely interact with non-player characters generated by GPT-4, a large language model. We recruit 28 gamers to play the game and use GPT-4 to automatically convert the game logs into a node-graph representing the narrative in the player's gameplay. We find that through their interactions with the non-deterministic behavior of the LLM, players are able to discover interesting new emergent nodes that were not a part of the original narrative but have potential for being fun and engaging. Players that created the most emergent nodes tended to be those that often enjoy games that facilitate discovery, exploration and experimentation.

Large vision-language models (VLMs) fine-tuned on specialized visual instruction-following data have exhibited impressive language reasoning capabilities across various scenarios. However, this fine-tuning paradigm may not be able to efficiently learn optimal decision-making agents in multi-step goal-directed tasks from interactive environments. To address this challenge, we propose an algorithmic framework that fine-tunes VLMs with reinforcement learning (RL). Specifically, our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning, enabling the VLM to efficiently explore intermediate reasoning steps that lead to the final text-based action. Next, the open-ended text output is parsed into an executable action to interact with the environment to obtain goal-directed task rewards. Finally, our framework uses these task rewards to fine-tune the entire VLM with RL. Empirically, we demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks, enabling 7b models to outperform commercial models such as GPT4-V or Gemini. Furthermore, we find that CoT reasoning is a crucial component for performance improvement, as removing the CoT reasoning results in a significant decrease in the overall performance of our method.

A recent line of research has established a novel desideratum for designing approximately-revenue-optimal multi-item mechanisms, namely the buy-many constraint. Under this constraint, prices for different allocations made by the mechanism must be subadditive, implying that the price of a bundle cannot exceed the sum of prices of individual items it contains. This natural constraint has enabled several positive results in multi-item mechanism design bypassing well-established impossibility results. Our work addresses the main open question from this literature of extending the buy-many constraint to multiple buyer settings and developing an approximation. We propose a new revenue benchmark for multi-buyer mechanisms via an ex-ante relaxation that captures several different ways of extending the buy-many constraint to the multi-buyer setting. Our main result is that a simple sequential item pricing mechanism with buyer-specific prices can achieve an $O(\log m)$ approximation to this revenue benchmark when all buyers have unit-demand or additive preferences over m items. This is the best possible as it directly matches the previous results for the single-buyer setting where no simple mechanism can obtain a better approximation. From a technical viewpoint we make two novel contributions. First, we develop a supply-constrained version of buy-many approximation for a single buyer. Second, we develop a multi-dimensional online contention resolution scheme for unit-demand buyers that may be of independent interest in mechanism design.

Large language models are well-known to be effective at few-shot in-context learning (ICL). Recent advancements in multimodal foundation models have enabled unprecedentedly long context windows, presenting an opportunity to explore their capability to perform ICL with many more demonstrating examples. In this work, we evaluate the performance of multimodal foundation models scaling from few-shot to many-shot ICL. We benchmark GPT-4o and Gemini 1.5 Pro across 10 datasets spanning multiple domains (natural imagery, medical imagery, remote sensing, and molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification). We observe that many-shot ICL, including up to almost 2,000 multimodal demonstrating examples, leads to substantial improvements compared to few-shot (<100 examples) ICL across all of the datasets. Further, Gemini 1.5 Pro performance continues to improve log-linearly up to the maximum number of tested examples on many datasets. Given the high inference costs associated with the long prompts required for many-shot ICL, we also explore the impact of batching multiple queries in a single API call. We show that batching up to 50 queries can lead to performance improvements under zero-shot and many-shot ICL, with substantial gains in the zero-shot setting on multiple datasets, while drastically reducing per-query cost and latency. Finally, we measure ICL data efficiency of the models, or the rate at which the models learn from more demonstrating examples. We find that while GPT-4o and Gemini 1.5 Pro achieve similar zero-shot performance across the datasets, Gemini 1.5 Pro exhibits higher ICL data efficiency than GPT-4o on most datasets. Our results suggest that many-shot ICL could enable users to efficiently adapt multimodal foundation models to new applications and domains. Our codebase is publicly available at //github.com/stanfordmlgroup/ManyICL .

Domain generalization aims to develop models that are robust to distribution shifts. Existing methods focus on learning invariance across domains to enhance model robustness, and data augmentation has been widely used to learn invariant predictors, with most methods performing augmentation in the input space. However, augmentation in the input space has limited diversity whereas in the feature space is more versatile and has shown promising results. Nonetheless, feature semantics is seldom considered and existing feature augmentation methods suffer from a limited variety of augmented features. We decompose features into class-generic, class-specific, domain-generic, and domain-specific components. We propose a cross-domain feature augmentation method named XDomainMix that enables us to increase sample diversity while emphasizing the learning of invariant representations to achieve domain generalization. Experiments on widely used benchmark datasets demonstrate that our proposed method is able to achieve state-of-the-art performance. Quantitative analysis indicates that our feature augmentation approach facilitates the learning of effective models that are invariant across different domains.

We propose a novel digital backpropagation (DBP) technique that combines perturbation theory, subband processing, and splitting ratio optimization. We obtain 0.23 dB, 0.47 dB, or 0.91 dB gains w.r.t. dispersion compensation with only 74, 161, or 681 real multiplications/2D-symbol, improving significantly on existing DBP techniques.

We model a Markov decision process, parametrized by an unknown parameter, and study the asymptotic behavior of a sampling-based algorithm, called Thompson sampling. The standard definition of regret is not always suitable to evaluate a policy, especially when the underlying chain structure is general. We show that the standard (expected) regret can grow (super-)linearly and fails to capture the notion of learning in realistic settings with non-trivial state evolution. By decomposing the standard (expected) regret, we develop a new metric, called the expected residual regret, which forgets the immutable consequences of past actions. Instead, it measures regret against the optimal reward moving forward from the current period. We show that the expected residual regret of the Thompson sampling algorithm is upper bounded by a term which converges exponentially fast to 0. We present conditions under which the posterior sampling error of Thompson sampling converges to 0 almost surely. We then introduce the probabilistic version of the expected residual regret and present conditions under which it converges to 0 almost surely. Thus, we provide a viable concept of learning for sampling algorithms which will serve useful in broader settings than had been considered previously.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司