In smart energy communities, prosumers who both generate and consume energy play a crucial role in shaping energy management strategies. These communities use advanced platforms that enable prosumers to actively engage in the local electricity markets by setting and adjusting their own energy prices. Through peer to peer (P2P) energy trading systems, members can directly exchange energy derived from sources such as solar photovoltaic panels, electric vehicle battery storage, and demand response (DR) programs. This direct exchange not only enhances the efficiency of the network but also fosters a dynamic energy market within the community. In this article, parking-sharing services for EVs and the mechanisms of P2P energy scheduling, which facilitates the transfer and communication of power among different energy communities (ECs) are addressed. It focuses on integrating solar power, responsive electrical loads, and electric vehicles (EVs) to optimize both economic returns and social benefits for all participants. The system is designed to ensure that all energy transactions are transparent and beneficial to the proactive consumers involved. Moreover, due to urban traffic conditions and the challenges of finding suitable locations for EV charging and parking, houses in these communities provide parking-sharing services for EVs. This integration of energy management and urban scheduling illustrates a holistic approach to addressing both energy and transportation challenges, ultimately leading to more sustainable urban environments.
The challenges involved in executing neural networks (NNs) at the edge include providing diversity, flexibility, and sustainability. That implies, for instance, supporting evolving applications and algorithms energy-efficiently. Using hardware or software accelerators can deliver fast and efficient computation of the NNs, while flexibility can be exploited to support long-term adaptivity. Nonetheless, handcrafting an NN for a specific device, despite the possibility of leading to an optimal solution, takes time and experience, and that's why frameworks for hardware accelerators are being developed. This work, starting from a preliminary semi-integrated ONNX-to-hardware toolchain [21], focuses on enabling approximate computing leveraging the distinctive ability of the original toolchain to favor adaptivity. The goal is to allow lightweight adaptable NN inference on FPGAs at the edge.
Speech foundation models, trained on vast datasets, have opened unique opportunities in addressing challenging low-resource speech understanding, such as child speech. In this work, we explore the capabilities of speech foundation models on child-adult speaker diarization. We show that exemplary foundation models can achieve 39.5% and 62.3% relative reductions in Diarization Error Rate and Speaker Confusion Rate, respectively, compared to previous speaker diarization methods. In addition, we benchmark and evaluate the speaker diarization results of the speech foundation models with varying the input audio window size, speaker demographics, and training data ratio. Our results highlight promising pathways for understanding and adopting speech foundation models to facilitate child speech understanding.
Spiking neural networks (SNNs) have attracted considerable attention for their event-driven, low-power characteristics and high biological interpretability. Inspired by knowledge distillation (KD), recent research has improved the performance of the SNN model with a pre-trained teacher model. However, additional teacher models require significant computational resources, and it is tedious to manually define the appropriate teacher network architecture. In this paper, we explore cost-effective self-distillation learning of SNNs to circumvent these concerns. Without an explicit defined teacher, the SNN generates pseudo-labels and learns consistency during training. On the one hand, we extend the timestep of the SNN during training to create an implicit temporal ``teacher" that guides the learning of the original ``student", i.e., the temporal self-distillation. On the other hand, we guide the output of the weak classifier at the intermediate stage by the final output of the SNN, i.e., the spatial self-distillation. Our temporal-spatial self-distillation (TSSD) learning method does not introduce any inference overhead and has excellent generalization ability. Extensive experiments on the static image datasets CIFAR10/100 and ImageNet as well as the neuromorphic datasets CIFAR10-DVS and DVS-Gesture validate the superior performance of the TSSD method. This paper presents a novel manner of fusing SNNs with KD, providing insights into high-performance SNN learning methods.
Despite recent improvements in End-to-End Automatic Speech Recognition (E2E ASR) systems, the performance can degrade due to vocal characteristic mismatches between training and testing data, particularly with limited target speaker adaptation data. We propose a novel speaker adaptation approach Speaker-Smoothed kNN that leverages k-Nearest Neighbors (kNN) retrieval techniques to improve model output by finding correctly pronounced tokens from its pre-built datastore during the decoding phase. Moreover, we utilize x-vector to dynamically adjust kNN interpolation parameters for data sparsity issue. This approach was validated using KeSpeech and MagicData corpora under in-domain and all-domain settings. Our method consistently performs comparably to fine-tuning without the associated performance degradation during speaker changes. Furthermore, in the all-domain setting, our method achieves state-of-the-art results, reducing the CER in both single speaker and multi-speaker test scenarios.
We investigate peer role model influence on successful graduation from Therapeutic Communities (TCs) for substance abuse and criminal behavior. We use data from 3 TCs that kept records of exchanges of affirmations among residents and their precise entry and exit dates, allowing us to form peer networks and define a causal effect of interest. The role model effect measures the difference in the expected outcome of a resident (ego) who can observe one of their peers graduate before the ego's exit vs not graduating. To identify peer influence in the presence of unobserved homophily in observational data, we model the network with a latent variable model. We show that our peer influence estimator is asymptotically unbiased when the unobserved latent positions are estimated from the observed network. We additionally propose a measurement error bias correction method to further reduce bias due to estimating latent positions. Our simulations show the proposed latent homophily adjustment and bias correction perform well in finite samples. We also extend the methodology to the case of binary response with a probit model. Our results indicate a positive effect of peers' graduation on residents' graduation and that it differs based on gender, race, and the definition of the role model effect. A counterfactual exercise quantifies the potential benefits of an intervention directly on the treated resident and indirectly on their peers through network propagation.
Supernumerary robotic limbs (SRLs) gained increasing interest in the last years for their applicability as healthcare and assistive technologies. These devices can either support or augment human sensorimotor capabilities, allowing users to complete tasks that are more complex than those feasible for their natural limbs. However, for a successful coordination between natural and artificial limbs, intuitiveness of interaction and perception of autonomy are key enabling features, especially for people suffering from motor disorders and impairments. The development of suitable human-robot interfaces is thus fundamental to foster the adoption of SRLs. With this work, we describe how to control an extra degree of freedom by taking advantage of what we defined the Intrinsic Kinematic Null Space, i.e. the redundancy of the human kinematic chain involved in the ongoing task. Obtained results demonstrated that the proposed control strategy is effective for performing complex tasks with a supernumerary robotic finger, and that practice improves users' control ability.
In order to transmit data and transfer energy to the low-power Internet of Things (IoT) devices, integrated data and energy networking (IDEN) system may be harnessed. In this context, we propose a bitwise end-to-end design for polar coded IDEN systems, where the conventional encoding/decoding, modulation/demodulation, and energy harvesting (EH) modules are replaced by the neural networks (NNs). In this way, the entire system can be treated as an AutoEncoder (AE) and trained in an end-to-end manner. Hence achieving global optimization. Additionally, we improve the common NN-based belief propagation (BP) decoder by adding an extra hypernetwork, which generates the corresponding NN weights for the main network under different number of iterations, thus the adaptability of the receiver architecture can be further enhanced. Our numerical results demonstrate that our BP-based end-to-end design is superior to conventional BP-based counterparts in terms of both the BER and power transfer, but it is inferior to the successive cancellation list (SCL)-based conventional IDEN system, which may be due to the inherent performance gap between the BP and SCL decoders.
The ability to learn compact, high-quality, and easy-to-optimize representations for visual data is paramount to many applications such as novel view synthesis and 3D reconstruction. Recent work has shown substantial success in using tensor networks to design such compact and high-quality representations. However, the ability to optimize tensor-based representations, and in particular, the highly compact tensor train representation, is still lacking. This has prevented practitioners from deploying the full potential of tensor networks for visual data. To this end, we propose 'Prolongation Upsampling Tensor Train (PuTT)', a novel method for learning tensor train representations in a coarse-to-fine manner. Our method involves the prolonging or `upsampling' of a learned tensor train representation, creating a sequence of 'coarse-to-fine' tensor trains that are incrementally refined. We evaluate our representation along three axes: (1). compression, (2). denoising capability, and (3). image completion capability. To assess these axes, we consider the tasks of image fitting, 3D fitting, and novel view synthesis, where our method shows an improved performance compared to state-of-the-art tensor-based methods. For full results see our project webpage: //sebulo.github.io/PuTT_website/
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.