亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Confidential computing is a key technology for isolating high-assurance applications from the large amounts of untrusted code typical in modern systems. Existing confidential computing systems cannot be certified for use in critical applications, like systems controlling critical infrastructure, hardware security modules, or aircraft, as they lack formal verification. This paper presents an approach to formally modeling and proving a security monitor. It introduces a canonical architecture for virtual machine (VM)-based confidential computing systems. It abstracts processor-specific components and identifies a minimal set of hardware primitives required by a trusted security monitor to enforce security guarantees. We demonstrate our methodology and proposed approach with an example from our Rust implementation of the security monitor for RISC-V.

相關內容

Equivalence checking is used to verify whether two programs produce equivalent outputs when given equivalent inputs. Research in this field mainly focused on improving equivalence checking accuracy and runtime performance. However, for program pairs that cannot be proven to be either equivalent or non-equivalent, existing approaches only report a classification result of "unknown", which provides no information regarding the programs' non-/equivalence. In this paper, we introduce PASDA, our partition-based semantic differencing approach with best effort classification of undecided cases. While PASDA aims to formally prove non-/equivalence of analyzed program pairs using a variant of differential symbolic execution, its main novelty lies in its handling of cases for which no formal non-/equivalence proof can be found. For such cases, PASDA provides a best effort equivalence classification based on a set of classification heuristics. We evaluated PASDA with an existing benchmark consisting of 141 non-/equivalent program pairs. PASDA correctly classified 61-74% of these cases at timeouts from 10 seconds to 3600 seconds. Thus, PASDA achieved equivalence checking accuracies that are 3-7% higher than the best results achieved by three existing tools. Furthermore, PASDA's best effort classifications were correct for 70-75% of equivalent and 55-85% of non-equivalent cases across the different timeouts.

Multi-turn compositional image generation (M-CIG) is a challenging task that aims to iteratively manipulate a reference image given a modification text. While most of the existing methods for M-CIG are based on generative adversarial networks (GANs), recent advances in image generation have demonstrated the superiority of diffusion models over GANs. In this paper, we propose a diffusion-based method for M-CIG named conditional denoising diffusion with image compositional matching (CDD-ICM). We leverage CLIP as the backbone of image and text encoders, and incorporate a gated fusion mechanism, originally proposed for question answering, to compositionally fuse the reference image and the modification text at each turn of M-CIG. We introduce a conditioning scheme to generate the target image based on the fusion results. To prioritize the semantic quality of the generated target image, we learn an auxiliary image compositional match (ICM) objective, along with the conditional denoising diffusion (CDD) objective in a multi-task learning framework. Additionally, we also perform ICM guidance and classifier-free guidance to improve performance. Experimental results show that CDD-ICM achieves state-of-the-art results on two benchmark datasets for M-CIG, i.e., CoDraw and i-CLEVR.

WebAssembly (Wasm) is a low-level bytecode language and virtual machine, intended as a compilation target for a wide range of programming languages, which is seeing increasing adoption across diverse ecosystems. As a young technology, Wasm continues to evolve -- it reached version 2.0 last year and another major update is expected soon. For a new feature to be standardised in Wasm, four key artefacts must be presented: a formal (mathematical) specification of the feature, an accompanying prose pseudocode description, an implementation in the official reference interpreter, and a suite of unit tests. This rigorous process helps to avoid errors in the design and implementation of new Wasm features, and Wasm's distinctive formal specification in particular has facilitated machine-checked proofs of various correctness properties for the language. However, manually crafting all of these artefacts requires expert knowledge combined with repetitive and tedious labor, which is a burden on the language's standardization process and authoring of the specification. This paper presents Wasm SpecTec, a technology to express the formal specification of Wasm through a domain-specific language. This DSL allows all of Wasm's currently handwritten specification artefacts to be error-checked and generated automatically from a single source of truth, and is designed to be easy to write, read, compare, and review. We believe that Wasm SpecTec's automation and meta-level error checking will significantly ease the current burden of the language's specification authors. We demonstrate the current capabilities of Wasm SpecTec by showcasing its proficiency in generating various artefacts, and describe our work towards replacing the manually written official Wasm specification document with specifications generated by Wasm SpecTec.

Entity resolution (ER) is the process of identifying records that refer to the same entities within one or across multiple databases. Numerous techniques have been developed to tackle ER challenges over the years, with recent emphasis placed on machine and deep learning methods for the matching phase. However, the quality of the benchmark datasets typically used in the experimental evaluations of learning-based matching algorithms has not been examined in the literature. To cover this gap, we propose four different approaches to assessing the difficulty and appropriateness of 13 established datasets: two theoretical approaches, which involve new measures of linearity and existing measures of complexity, and two practical approaches: the difference between the best non-linear and linear matchers, as well as the difference between the best learning-based matcher and the perfect oracle. Our analysis demonstrates that most of the popular datasets pose rather easy classification tasks. As a result, they are not suitable for properly evaluating learning-based matching algorithms. To address this issue, we propose a new methodology for yielding benchmark datasets. We put it into practice by creating four new matching tasks, and we verify that these new benchmarks are more challenging and therefore more suitable for further advancements in the field.

This study considers a virtual multiuser multiple-input multiple-output system with PSK modulation realized via the reconfigurable intelligent surface-based passive transmitter setup. Under this framework, the study derives the formulation for the union-bound symbol-error probability, which is an upper bound on the actual symbol-error probability. Based on this, a symbol-level precoding power minimization problem under the condition that the union-bound symbol-error probability is below a given requirement is proposed. The problem is formulated as a constrained optimization on an oblique manifold, and solved via a bisection method. The method consists of successively optimizing transmit power while evaluating the feasibility of the union-bound symbol-error probability requisite by solving, via the Riemannian conjugate gradient algorithm, an auxiliary problem dependent only on the reflection coefficients of the reconfigurable intelligent surface elements. Numerical results demonstrate the effectiveness of the proposed approach in minimizing the transmit power for different symbol-error probability requirements.

As a driving force in the advancement of intelligent in-orbit applications, DNN models have been gradually integrated into satellites, producing daily latency-constraint and computation-intensive tasks. However, the substantial computation capability of DNN models, coupled with the instability of the satellite-ground link, pose significant challenges, hindering timely completion of tasks. It becomes necessary to adapt to task stream changes when dealing with tasks requiring latency guarantees, such as dynamic observation tasks on the satellites. To this end, we consider a system model for a collaborative inference system with latency constraints, leveraging the multi-exit and model partition technology. To address this, we propose an algorithm, which is tailored to effectively address the trade-off between task completion and maintaining satisfactory task accuracy by dynamically choosing early-exit and partition points. Simulation evaluations show that our proposed algorithm significantly outperforms baseline algorithms across the task stream with strict latency constraints.

Positional encodings are employed to capture the high frequency information of the encoded signals in implicit neural representation (INR). In this paper, we propose a novel positional encoding method which improves the reconstruction quality of the INR. The proposed embedding method is more advantageous for the compact data representation because it has a greater number of frequency basis than the existing methods. Our experiments shows that the proposed method achieves significant gain in the rate-distortion performance without introducing any additional complexity in the compression task and higher reconstruction quality in novel view synthesis.

Sparse matrix representations are ubiquitous in computational science and machine learning, leading to significant reductions in compute time, in comparison to dense representation, for problems that have local connectivity. The adoption of sparse representation in leading ML frameworks such as PyTorch is incomplete, however, with support for both automatic differentiation and GPU acceleration missing. In this work, we present an implementation of a CSR-based sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix operations, as well as automatic differentiability. We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司