While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper proposes an audio-visual sound event localization and detection (SELD) task, which uses multichannel audio and video information to estimate the temporal activation and DOA of target sound events. Audio-visual SELD systems can detect and localize sound events using signals from a microphone array and audio-visual correspondence. We also introduce an audio-visual dataset, Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23), which consists of multichannel audio data recorded with a microphone array, video data, and spatiotemporal annotation of sound events. Sound scenes in STARSS23 are recorded with instructions, which guide recording participants to ensure adequate activity and occurrences of sound events. STARSS23 also serves human-annotated temporal activation labels and human-confirmed DOA labels, which are based on tracking results of a motion capture system. Our benchmark results demonstrate the benefits of using visual object positions in audio-visual SELD tasks. The data is available at //zenodo.org/record/7880637.
We present DIALIGHT, a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems which facilitates systematic evaluations and comparisons between ToD systems using fine-tuning of Pretrained Language Models (PLMs) and those utilising the zero-shot and in-context learning capabilities of Large Language Models (LLMs). In addition to automatic evaluation, this toolkit features (i) a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level, and (ii) a microservice-based backend, improving efficiency and scalability. Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses. However, we also identify significant challenges of LLMs in adherence to task-specific instructions and generating outputs in multiple languages, highlighting areas for future research. We hope this open-sourced toolkit will serve as a valuable resource for researchers aiming to develop and properly evaluate multilingual ToD systems and will lower, currently still high, entry barriers in the field.
Recent advances in visual anomaly detection research have seen AUROC and AUPRO scores on public benchmark datasets such as MVTec and VisA converge towards perfect recall, giving the impression that these benchmarks are near-solved. However, high AUROC and AUPRO scores do not always reflect qualitative performance, which limits the validity of these metrics in real-world applications. We argue that the artificial ceiling imposed by the lack of an adequate evaluation metric restrains progression of the field, and it is crucial that we revisit the evaluation metrics used to rate our algorithms. In response, we introduce Per-IMage Overlap (PIMO), a novel metric that addresses the shortcomings of AUROC and AUPRO. PIMO retains the recall-based nature of the existing metrics but introduces two distinctions: the assignment of curves (and respective area under the curve) is per-image, and its X-axis relies solely on normal images. Measuring recall per image simplifies instance score indexing and is more robust to noisy annotations. As we show, it also accelerates computation and enables the usage of statistical tests to compare models. By imposing low tolerance for false positives on normal images, PIMO provides an enhanced model validation procedure and highlights performance variations across datasets. Our experiments demonstrate that PIMO offers practical advantages and nuanced performance insights that redefine anomaly detection benchmarks -- notably challenging the perception that MVTec AD and VisA datasets have been solved by contemporary models. Available on GitHub: //github.com/jpcbertoldo/aupimo.
Presenting dynamic scenes without incurring motion artifacts visible to observers requires sustained effort from the display industry. A tool that predicts motion artifacts and simulates artifact elimination through optimizing the display configuration is highly desired to guide the design and manufacture of modern displays. Despite the popular demands, there is no such tool available in the market. In this study, we deliver an interactive toolkit, Binocular Perceived Motion Artifact Predictor (BiPMAP), as an executable file with GPU acceleration. BiPMAP accounts for an extensive collection of user-defined parameters and directly visualizes a variety of motion artifacts by presenting the perceived continuous and sampled moving stimuli side-by-side. For accurate artifact predictions, BiPMAP utilizes a novel model of the human contrast sensitivity function to effectively imitate the frequency modulation of the human visual system. In addition, BiPMAP is capable of deriving various in-plane motion artifacts for 2D displays and depth distortion in 3D stereoscopic displays.
Most existing video diffusion models (VDMs) are limited to mere text conditions. Thereby, they are usually lacking in control over visual appearance and geometry structure of the generated videos. This work presents Moonshot, a new video generation model that conditions simultaneously on multimodal inputs of image and text. The model builts upon a core module, called multimodal video block (MVB), which consists of conventional spatialtemporal layers for representing video features, and a decoupled cross-attention layer to address image and text inputs for appearance conditioning. In addition, we carefully design the model architecture such that it can optionally integrate with pre-trained image ControlNet modules for geometry visual conditions, without needing of extra training overhead as opposed to prior methods. Experiments show that with versatile multimodal conditioning mechanisms, Moonshot demonstrates significant improvement on visual quality and temporal consistency compared to existing models. In addition, the model can be easily repurposed for a variety of generative applications, such as personalized video generation, image animation and video editing, unveiling its potential to serve as a fundamental architecture for controllable video generation. Models will be made public on //github.com/salesforce/LAVIS.
The growing demand for natural interactions with technology underscores the importance of achieving realistic touch sensations in digital environments. Realizing this goal highly depends on comprehensive databases of finger-surface interactions, which need further development. Here, we present SENS3, an extensive open-access repository of multisensory data acquired from fifty surfaces when two participants explored them with their fingertips through static contact, pressing, tapping, and sliding. SENS3 encompasses high-fidelity visual, audio, and haptic information recorded during these interactions, including videos, sounds, contact forces, torques, positions, accelerations, skin temperature, heat flux, and surface photographs. Additionally, it incorporates thirteen participants' psychophysical sensation ratings while exploring these surfaces freely. We anticipate that SENS3 will be valuable for advancing multisensory texture rendering, user experience development, and touch sensing in robotics.
Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a Gaussian-Mixture-Model based Transformer which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (i.e., TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer. Code is available at \url{//github.com/huangmozhi9527/GMMFormer}.
While significant advancements have been made in video question answering (VideoQA), the potential benefits of enhancing model generalization through tailored difficulty scheduling have been largely overlooked in existing research. This paper seeks to bridge that gap by incorporating VideoQA into a curriculum learning (CL) framework that progressively trains models from simpler to more complex data. Recognizing that conventional self-paced CL methods rely on training loss for difficulty measurement, which might not accurately reflect the intricacies of video-question pairs, we introduce the concept of uncertainty-aware CL. Here, uncertainty serves as the guiding principle for dynamically adjusting the difficulty. Furthermore, we address the challenge posed by uncertainty by presenting a probabilistic modeling approach for VideoQA. Specifically, we conceptualize VideoQA as a stochastic computation graph, where the hidden representations are treated as stochastic variables. This yields two distinct types of uncertainty: one related to the inherent uncertainty in the data and another pertaining to the model's confidence. In practice, we seamlessly integrate the VideoQA model into our framework and conduct comprehensive experiments. The findings affirm that our approach not only achieves enhanced performance but also effectively quantifies uncertainty in the context of VideoQA.
It is challenging but highly desired to acquire high-quality photos with clear content in low-light environments. Although multi-image processing methods (using burst, dual-exposure, or multi-exposure images) have made significant progress in addressing this issue, they typically focus exclusively on specific restoration or enhancement tasks, being insufficient in exploiting multi-image. Motivated by that multi-exposure images are complementary in denoising, deblurring, high dynamic range imaging, and super-resolution, we propose to utilize bracketing photography to unify restoration and enhancement tasks in this work. Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data and then adapts it to real-world unlabeled images. In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed. Moreover, we construct a data simulation pipeline to synthesize pairs and collect real-world images from 200 nighttime scenarios. Experiments on both datasets show that our method performs favorably against the state-of-the-art multi-image processing ones. The dataset, code, and pre-trained models are available at //github.com/cszhilu1998/BracketIRE.
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.