亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This is a short comment on the paper "Asymptotically Stable Adaptive-Optimal Control Algorithm With Saturating Actuators and Relaxed Persistence of Excitation" by Vamvoudakis et al. The question of stability of reinforcement learning (RL) agents remains hard and the said work suggested an on-policy approach with a suitable stability property using a technique from adaptive control - a robustifying term to be added to the action. However, there is an issue with this approach to stabilizing RL, which we will explain in this note. Furthermore, Vamvoudakis et al. seems to have made a fallacious assumption on the Hamiltonian under a generic policy. To provide a positive result, we will not only indicate this mistake, but show critic neural network weight convergence under a stochastic, continuous-time environment, provided certain conditions on the behavior policy hold.

相關內容

強化(hua)(hua)學(xue)(xue)(xue)習(RL)是機(ji)(ji)器(qi)學(xue)(xue)(xue)習的一(yi)(yi)個(ge)領域,與軟件代理(li)應(ying)如何在(zai)環境中采取行動(dong)以最大化(hua)(hua)累積(ji)獎勵的概(gai)念有關(guan)。除(chu)了監督(du)學(xue)(xue)(xue)習和(he)非(fei)監督(du)學(xue)(xue)(xue)習外(wai),強化(hua)(hua)學(xue)(xue)(xue)習是三種基本的機(ji)(ji)器(qi)學(xue)(xue)(xue)習范式之(zhi)一(yi)(yi)。 強化(hua)(hua)學(xue)(xue)(xue)習與監督(du)學(xue)(xue)(xue)習的不(bu)(bu)同之(zhi)處在(zai)于,不(bu)(bu)需要呈現帶標簽的輸入/輸出對(dui)(dui),也(ye)不(bu)(bu)需要顯式糾正次(ci)優動(dong)作。相反,重點是在(zai)探索(未(wei)知領域)和(he)利(li)用(當前知識)之(zhi)間找到平衡。 該環境通常以馬爾可夫決(jue)策過程(cheng)(cheng)(MDP)的形式陳述,因為針對(dui)(dui)這種情況的許多(duo)強化(hua)(hua)學(xue)(xue)(xue)習算(suan)法都使用動(dong)態編程(cheng)(cheng)技術(shu)。經(jing)典動(dong)態規劃方法和(he)強化(hua)(hua)學(xue)(xue)(xue)習算(suan)法之(zhi)間的主要區別在(zai)于,后(hou)者不(bu)(bu)假設MDP的確切(qie)數學(xue)(xue)(xue)模型,并且針對(dui)(dui)無(wu)法采用精確方法的大型MDP。

知識薈萃

精品入門和(he)進(jin)階教程、論文和(he)代碼整理等(deng)

更多

查看相關VIP內容、論文、資訊(xun)等(deng)

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying to safety-critical applications. Primal-dual as a prevalent constrained optimization framework suffers from instability issues and lacks optimality guarantees. This paper overcomes the issues from a novel probabilistic inference perspective and proposes an Expectation-Maximization style approach to learn safe policy. We show that the safe RL problem can be decomposed to 1) a convex optimization phase with a non-parametric variational distribution and 2) a supervised learning phase. We show the unique advantages of constrained variational policy optimization by proving its optimality and policy improvement stability. A wide range of experiments on continuous robotic tasks show that the proposed method achieves significantly better performance in terms of constraint satisfaction and sample efficiency than primal-dual baselines.

In reinforcement learning, it is common to let an agent interact for a fixed amount of time with its environment before resetting it and repeating the process in a series of episodes. The task that the agent has to learn can either be to maximize its performance over (i) that fixed period, or (ii) an indefinite period where time limits are only used during training to diversify experience. In this paper, we provide a formal account for how time limits could effectively be handled in each of the two cases and explain why not doing so can cause state aliasing and invalidation of experience replay, leading to suboptimal policies and training instability. In case (i), we argue that the terminations due to time limits are in fact part of the environment, and thus a notion of the remaining time should be included as part of the agent's input to avoid violation of the Markov property. In case (ii), the time limits are not part of the environment and are only used to facilitate learning. We argue that this insight should be incorporated by bootstrapping from the value of the state at the end of each partial episode. For both cases, we illustrate empirically the significance of our considerations in improving the performance and stability of existing reinforcement learning algorithms, showing state-of-the-art results on several control tasks.

Reinforcement learning (RL) applications, where an agent can simply learn optimal behaviors by interacting with the environment, are quickly gaining tremendous success in a wide variety of applications from controlling simple pendulums to complex data centers. However, setting the right hyperparameters can have a huge impact on the deployed solution performance and reliability in the inference models, produced via RL, used for decision-making. Hyperparameter search itself is a laborious process that requires many iterations and computationally expensive to find the best settings that produce the best neural network architectures. In comparison to other neural network architectures, deep RL has not witnessed much hyperparameter tuning, due to its algorithm complexity and simulation platforms needed. In this paper, we propose a distributed variable-length genetic algorithm framework to systematically tune hyperparameters for various RL applications, improving training time and robustness of the architecture, via evolution. We demonstrate the scalability of our approach on many RL problems (from simple gyms to complex applications) and compared with Bayesian approach. Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment. Our results are imperative to advance deep reinforcement learning controllers for real-world problems.

Recent successes of value-based multi-agent deep reinforcement learning employ optimism in value function by carefully controlling learning rate(Omidshafiei et al., 2017) or reducing update prob-ability (Palmer et al., 2018). We introduce a de-centralized quantile estimator: Responsible Implicit Quantile Network (RIQN), while robust to teammate-environment interactions, able to reduce the amount of imposed optimism. Upon benchmarking against related Hysteretic-DQN(HDQN) and Lenient-DQN (LDQN), we findRIQN agents more stable, sample efficient and more likely to converge to the optimal policy.

This paper proposes a model-free Reinforcement Learning (RL) algorithm to synthesise policies for an unknown Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), then construct a synchronized MDP between the automaton and the original MDP. According to the resulting LDBA, a reward function is then defined over the state-action pairs of the product MDP. With this reward function, our algorithm synthesises a policy whose traces satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.

Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

Policy gradient methods are widely used in reinforcement learning algorithms to search for better policies in the parameterized policy space. They do gradient search in the policy space and are known to converge very slowly. Nesterov developed an accelerated gradient search algorithm for convex optimization problems. This has been recently extended for non-convex and also stochastic optimization. We use Nesterov's acceleration for policy gradient search in the well-known actor-critic algorithm and show the convergence using ODE method. We tested this algorithm on a scheduling problem. Here an incoming job is scheduled into one of the four queues based on the queue lengths. We see from experimental results that algorithm using Nesterov's acceleration has significantly better performance compared to algorithm which do not use acceleration. To the best of our knowledge this is the first time Nesterov's acceleration has been used with actor-critic algorithm.

北京阿比特科技有限公司