亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of brain science, data sharing across servers is becoming increasingly challenging due to issues such as industry competition, privacy security, and administrative procedure policies and regulations. Therefore, there is an urgent need to develop new methods for data analysis and processing that enable scientific collaboration without data sharing. In view of this, this study proposes to study and develop a series of efficient non-negative coupled tensor decomposition algorithm frameworks based on federated learning called FCNCP for the EEG data arranged on different servers. It combining the good discriminative performance of tensor decomposition in high-dimensional data representation and decomposition, the advantages of coupled tensor decomposition in cross-sample tensor data analysis, and the features of federated learning for joint modelling in distributed servers. The algorithm utilises federation learning to establish coupling constraints for data distributed across different servers. In the experiments, firstly, simulation experiments are carried out using simulated data, and stable and consistent decomposition results are obtained, which verify the effectiveness of the proposed algorithms in this study. Then the FCNCP algorithm was utilised to decompose the fifth-order event-related potential (ERP) tensor data collected by applying proprioceptive stimuli on the left and right hands. It was found that contralateral stimulation induced more symmetrical components in the activation areas of the left and right hemispheres. The conclusions drawn are consistent with the interpretations of related studies in cognitive neuroscience, demonstrating that the method can efficiently process higher-order EEG data and that some key hidden information can be preserved.

相關內容

Compared with the remarkable progress made in parallel numerical solvers of partial differential equations,the development of algorithms for generating unstructured triangular/tetrahedral meshes has been relatively sluggish. In this paper, we propose a novel, consistent parallel advancing front technique (CPAFT) by combining the advancing front technique, the domain decomposition method based on space-filling curves, the distributed forest-of-overlapping-trees approach, and the consistent parallel maximal independent set algorithm. The newly proposed CPAFT algorithm can mathematically ensure that the generated unstructured triangular/tetrahedral meshes are independent of the number of processors and the implementation of domain decomposition. Several numerical tests are conducted to validate the parallel consistency and outstanding parallel efficiency of the proposed algorithm, which scales effectively up to two thousand processors. This is, as far as we know, the first parallel unstructured triangular/tetrahedral mesh generator with scalability to O(1,000) CPU processors.

Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.

In recent years, extensive research has been conducted to explore the utilization of machine learning algorithms in various direct-detected and self-coherent short-reach communication applications. These applications encompass a wide range of tasks, including bandwidth request prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing (DSP)-based equalization. As a versatile approach, machine learning demonstrates the ability to address stochastic phenomena in optical systems networks where deterministic methods may fall short. However, when it comes to DSP equalization algorithms, their performance improvements are often marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach communications scenarios such as passive optical networks (PONs). They excel in capturing temporal dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time intervals. Within this extensive survey, we outline the application of machine learning techniques in short-reach communications, specifically emphasizing their utilization in high-bandwidth demanding PONs. Notably, we introduce a novel taxonomy for time-series methods employed in machine learning signal processing, providing a structured classification framework. Our taxonomy categorizes current time series methods into four distinct groups: traditional methods, Fourier convolution-based methods, transformer-based models, and time-series convolutional networks. Finally, we highlight prospective research directions within this rapidly evolving field and outline specific solutions to mitigate the complexity associated with hardware implementations. We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems by addressing complexity concerns.

While dynamic graph neural networks have shown promise in various applications, explaining their predictions on continuous-time dynamic graphs (CTDGs) is difficult. This paper investigates a new research task: self-interpretable GNNs for CTDGs. We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions. There are two key challenges: (1) capturing the underlying structural and temporal information that remains consistent across both independent and identically distributed (IID) and out-of-distribution (OOD) data, and (2) efficiently generating high-quality link prediction results and explanations. To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM). ICCM is then integrated into a deep learning architecture that considers both effectiveness and efficiency. Extensive experiments demonstrate that our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features. Our code and datasets are anonymously released at //github.com/2024SIG/SIG.

This paper addresses the multi-faceted problem of robot grasping, where multiple criteria may conflict and differ in importance. We introduce a probabilistic framework, Grasp Ranking and Criteria Evaluation (GRaCE), which employs hierarchical rule-based logic and a rank-preserving utility function for grasps based on various criteria such as stability, kinematic constraints, and goal-oriented functionalities. GRaCE's probabilistic nature means the framework handles uncertainty in a principled manner, i.e., the method is able to leverage the probability that a given criteria is satisfied. Additionally, we propose GRaCE-OPT, a hybrid optimization strategy that combines gradient-based and gradient-free methods to effectively navigate the complex, non-convex utility function. Experimental results in both simulated and real-world scenarios show that GRaCE requires fewer samples to achieve comparable or superior performance relative to existing methods. The modular architecture of GRaCE allows for easy customization and adaptation to specific application needs.

This article presents a novel approach to multimodal recommendation systems, focusing on integrating and purifying multimodal data. Our methodology starts by developing a filter to remove noise from various types of data, making the recommendations more reliable. We studied the impact of top-K sparsification on different datasets, finding optimal values that strike a balance between underfitting and overfitting concerns. The study emphasizes the significant role of textual information compared to visual data in providing a deep understanding of items. We conducted sensitivity analyses to understand how different modalities and the use of purifier circle loss affect the efficiency of the model. The findings indicate that systems that incorporate multiple modalities perform better than those relying on just one modality. Our approach highlights the importance of modality purifiers in filtering out irrelevant data, ensuring that user preferences remain relevant. Models without modality purifiers showed reduced performance, emphasizing the need for effective integration of pre-extracted features. The proposed model, which includes an novel self supervised auxiliary task, shows promise in accurately capturing user preferences. The main goal of the fusion technique is to enhance the modeling of user preferences by combining knowledge with item information, utilizing sophisticated language models. Extensive experiments show that our model produces better results than the existing state-of-the-art multimodal recommendation systems.

This paper introduces holographic cross-device interaction, a new class of remote cross-device interactions between local physical devices and holographically rendered remote devices. Cross-device interactions have enabled a rich set of interactions with device ecologies. Most existing research focuses on co-located settings (meaning when users and devices are in the same physical space) to achieve these rich interactions and affordances. In contrast, holographic cross-device interaction allows remote interactions between devices at distant locations by providing a rich visual affordance through real-time holographic rendering of the device's motion, content, and interactions on mixed reality head-mounted displays. This maintains the advantages of having a physical device, such as precise input through touch and pen interaction. Through holographic rendering, not only can remote devices interact as if they are co-located, but they can also be virtually augmented to further enrich interactions, going beyond what is possible with existing cross-device systems. To demonstrate this concept, we developed HoloDevice, a prototype system for holographic cross-device interaction using the Microsoft Hololens 2 augmented reality headset. Our contribution is threefold. First, we introduce the concept of holographic cross-device interaction. Second, we present a design space containing three unique benefits, which include: (1) spatial visualization of interaction and motion, (2) rich visual affordances for intermediate transition, and (3) dynamic and fluid configuration. Last we discuss a set of implementation demonstrations and use-case scenarios that further explore the space.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司