亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although Large Language Models (LLMs) exhibit remarkable adaptability across domains, these models often fall short in structured knowledge extraction tasks such as named entity recognition (NER). This paper explores an innovative, cost-efficient strategy to harness LLMs with modest NER capabilities for producing superior NER datasets. Our approach diverges from the basic class-conditional prompts by instructing LLMs to self-reflect on the specific domain, thereby generating domain-relevant attributes (such as category and emotions for movie reviews), which are utilized for creating attribute-rich training data. Furthermore, we preemptively generate entity terms and then develop NER context data around these entities, effectively bypassing the LLMs' challenges with complex structures. Our experiments across both general and niche domains reveal significant performance enhancements over conventional data generation methods while being more cost-effective than existing alternatives.

相關內容

命(ming)名實(shi)體識別(NER)(也稱為(wei)實(shi)體標識,實(shi)體組(zu)塊和實(shi)體提取)是信息(xi)抽取的子(zi)任務(wu),旨在將非(fei)結構化(hua)文本中(zhong)提到的命(ming)名實(shi)體定位和分類為(wei)預定義類別,例如(ru)人(ren)員姓名、地名、機構名、專有名詞(ci)等。

知識薈萃

精品入(ru)門和進階教程、論文和代碼整理(li)等

更多

查看(kan)相關(guan)VIP內容、論(lun)文、資訊等

This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.

We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: //sai-bi.github.io/project/gs-lrm/ .

Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models.

Electronic Health Record (EHR) data, while rich in information, often suffers from sparsity, posing significant challenges in predictive modeling. Traditional imputation methods inadequately distinguish between real and imputed data, leading to potential inaccuracies in models. Addressing this, we introduce PRISM, a framework that indirectly imputes data through prototype representations of similar patients, thus ensuring denser and more accurate embeddings. PRISM also includes a feature confidence learner module, which evaluates the reliability of each feature in light of missing data. Additionally, it incorporates a new patient similarity metric that accounts for feature confidence, avoiding overreliance on imprecise imputed values. Our extensive experiments on the MIMIC-III, MIMIC-IV, PhysioNet Challenge 2012, eICU datasets demonstrate PRISM 's superior performance in predicting in-hospital mortality and 30-day readmission tasks, showcasing its effectiveness in handling EHR data sparsity. For the sake of reproducibility and further research, we have made the code publicly available at //github.com/yhzhu99/PRISM.

Reconfigurable Intelligent Surface (RIS) modeling and optimization are a crucial steps in developing the next generation of wireless communications. To this aim, the availability of accurate electromagnetic (EM) models is of paramount important for the design of RIS-assisted communication links. In this work, we validate a widely-used analytical multiport network for RISs by means of a well-established full-wave numerical method based on the Partial Elements Equivalent Circuit (PEEC) approach. Numerical results show good agreement between the two methods, thus demonstrating i) the considered multiport network model being effective and ii) the PEEC method being appropriate for EM modeling of RIS-assisted wireless links.

Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatics. Despite their effectiveness, their adoption has not been pervasive because of scalability challenges associated with large-scale graph datasets, particularly when leveraging message passing. To tackle these challenges, we introduce NeuraChip, a novel GNN spatial accelerator based on Gustavson's algorithm. NeuraChip decouples the multiplication and addition computations in sparse matrix multiplication. This separation allows for independent exploitation of their unique data dependencies, facilitating efficient resource allocation. We introduce a rolling eviction strategy to mitigate data idling in on-chip memory as well as address the prevalent issue of memory bloat in sparse graph computations. Furthermore, the compute resource load balancing is achieved through a dynamic reseeding hash-based mapping, ensuring uniform utilization of computing resources agnostic of sparsity patterns. Finally, we present NeuraSim, an open-source, cycle-accurate, multi-threaded, modular simulator for comprehensive performance analysis. Overall, NeuraChip presents a significant improvement, yielding an average speedup of 22.1x over Intel's MKL, 17.1x over NVIDIA's cuSPARSE, 16.7x over AMD's hipSPARSE, and 1.5x over prior state-of-the-art SpGEMM accelerator and 1.3x over GNN accelerator. The source code for our open-sourced simulator and performance visualizer is publicly accessible on GitHub //neurachip.us

Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.

The Effective Receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed at most during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERF remains not large enough instead, or heavy non-local attention mechanisms, which limit the potential of high-resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the first time in the learned image compression community, we introduce a few large kernel-based depth-wise convolutions to reduce more redundancy while maintaining modest complexity. Due to the wide range of image diversity, we further propose a mechanism to augment convolution adaptability through the self-conditioned generation of weights. The large kernels cooperate with non-linear embedding and gate mechanisms for better expressiveness and lighter point-wise interactions. Our investigation extends to refined training methods that unlock the full potential of these large kernels. Moreover, to promote more dynamic inter-channel interactions, we introduce an adaptive channel-wise bit allocation strategy that autonomously generates channel importance factors in a self-conditioned manner. To demonstrate the effectiveness of the proposed transform coding, we align the entropy model to compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC, LLIC-TCM. Extensive experiments demonstrate our proposed LLIC models have significant improvements over corresponding baselines and reduce BD-Rate by 9.49%, 9.47%, 10.94% on Kodak over VTM-17.0 Intra, respectively. Our LLIC models achieve state-of-the-art performances and better trade-offs between performance and complexity.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司