亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we construct a winning condition $W$ over a finite set of colors such that, first, every finite arena has a strategy with 2 states of general memory which is optimal w.r.t.~$W$, and second, there exists no $k$ such that every finite arena has a strategy with $k$ states of chromatic memory which is optimal w.r.t.~$W$.

相關內容

In this paper, we propose a novel approach to Bayesian Experimental Design (BED) for non-exchangeable data that formulates it as risk-sensitive policy optimization. We develop the Inside-Out SMC^2 algorithm that uses a nested sequential Monte Carlo (SMC) estimator of the expected information gain and embeds it into a particle Markov chain Monte Carlo (pMCMC) framework to perform gradient-based policy optimization. This is in contrast to recent approaches that rely on biased estimators of the expected information gain (EIG) to amortize the cost of experiments by learning a design policy in advance. Numerical validation on a set of dynamical systems showcases the efficacy of our method in comparison to other state-of-the-art strategies.

This paper focuses on text detoxification, i.e., automatically converting toxic text into non-toxic text. This task contributes to safer and more respectful online communication and can be considered a Text Style Transfer (TST) task, where the text style changes while its content is preserved. We present three approaches: knowledge transfer from a similar task, multi-task learning approach, combining sequence-to-sequence modeling with various toxicity classification tasks, and, delete and reconstruct approach. To support our research, we utilize a dataset provided by Dementieva et al.(2021), which contains multiple versions of detoxified texts corresponding to toxic texts. In our experiments, we selected the best variants through expert human annotators, creating a dataset where each toxic sentence is paired with a single, appropriate detoxified version. Additionally, we introduced a small Hindi parallel dataset, aligning with a part of the English dataset, suitable for evaluation purposes. Our results demonstrate that our approach effectively balances text detoxication while preserving the actual content and maintaining fluency.

In this work, we address the problem of approximate pattern matching with wildcards. Given a pattern $P$ of length $m$ containing $D$ wildcards, a text $T$ of length $n$, and an integer $k$, our objective is to identify all fragments of $T$ within Hamming distance $k$ from $P$. Our primary contribution is an algorithm with runtime $O(n+(D+k)(G+k)\cdot n/m)$ for this problem. Here, $G \le D$ represents the number of maximal wildcard fragments in $P$. We derive this algorithm by elaborating in a non-trivial way on the ideas presented by [Charalampopoulos et al., FOCS'20] for pattern matching with mismatches (without wildcards). Our algorithm improves over the state of the art when $D$, $G$, and $k$ are small relative to $n$. For instance, if $m = n/2$, $k=G=n^{2/5}$, and $D=n^{3/5}$, our algorithm operates in $O(n)$ time, surpassing the $\Omega(n^{6/5})$ time requirement of all previously known algorithms. In the case of exact pattern matching with wildcards ($k=0$), we present a much simpler algorithm with runtime $O(n+DG\cdot n/m)$ that clearly illustrates our main technical innovation: the utilisation of positions of $P$ that do not belong to any fragment of $P$ with a density of wildcards much larger than $D/m$ as anchors for the sought (approximate) occurrences. Notably, our algorithm outperforms the best-known $O(n\log m)$-time FFT-based algorithms of [Cole and Hariharan, STOC'02] and [Clifford and Clifford, IPL'04] if $DG = o(m\log m)$. We complement our algorithmic results with a structural characterization of the $k$-mismatch occurrences of $P$. We demonstrate that in a text of length $O(m)$, these occurrences can be partitioned into $O((D+k)(G+k))$ arithmetic progressions. Additionally, we construct an infinite family of examples with $\Omega((D+k)k)$ arithmetic progressions of occurrences, leveraging a combinatorial result on progression-free sets [Elkin, SODA'10].

In this paper, we build on the 1971 memo "Twenty Things to Do With a Computer" by Seymour Papert and Cynthia Solomon and propose twenty constructionist things to do with artificial intelligence and machine learning. Several proposals build on ideas developed in the original memo while others are new and address topics in science, mathematics, and the arts. In reviewing the big themes, we notice a renewed interest in children's engagement not just for technical proficiency but also to cultivate a deeper understanding of their own cognitive processes. Furthermore, the ideas stress the importance of designing personally relevant AI/ML applications, moving beyond isolated models and off-the-shelf datasets disconnected from their interests. We also acknowledge the social aspects of data production involved in making AI/ML applications. Finally, we highlight the critical dimensions necessary to address potential harmful algorithmic biases and consequences of AI/ML applications.

In this paper, we introduce LLaVA-$\phi$ (LLaVA-Phi), an efficient multi-modal assistant that harnesses the power of the recently advanced small language model, Phi-2, to facilitate multi-modal dialogues. LLaVA-Phi marks a notable advancement in the realm of compact multi-modal models. It demonstrates that even smaller language models, with as few as 2.7B parameters, can effectively engage in intricate dialogues that integrate both textual and visual elements, provided they are trained with high-quality corpora. Our model delivers commendable performance on publicly available benchmarks that encompass visual comprehension, reasoning, and knowledge-based perception. Beyond its remarkable performance in multi-modal dialogue tasks, our model opens new avenues for applications in time-sensitive environments and systems that require real-time interaction, such as embodied agents. It highlights the potential of smaller language models to achieve sophisticated levels of understanding and interaction, while maintaining greater resource efficiency.The project is available at {//github.com/zhuyiche/llava-phi}.

Modern SAT and SMT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF) so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or Plaisted and Greenbaum transformations. When passing from solving to enumeration, however, the capability of producing partial satisfying assignments that are as small as possible becomes crucial, which raises the question of whether such CNF encodings are also effective for enumeration. In this paper, we investigate both theoretically and empirically the effectiveness of CNF conversions for SAT and SMT enumeration. On the negative side, we show that: (i) Tseitin transformation prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness of enumeration; (ii) Plaisted and Greenbaum transformation overcomes this problem only in part. On the positive side, we prove theoretically and we show empirically that combining Plaisted and Greenbaum transformation with NNF preprocessing upfront -- which is typically not used in solving -- can fully overcome the problem and can drastically reduce both the number of partial assignments and the execution time.

In this paper, we propose R$^3$: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R$^3$ overcomes these limitations by learning from correct demonstrations. Specifically, R$^3$ progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R$^3$ establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by $4.1$ points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by $4.2$ points across three backbone models, and without any extra data, Codellama-7B + R$^3$ performs comparable to larger models or closed-source models.

In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at //gh-bumsookim.github.io/Minecraft-ify/

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

北京阿比特科技有限公司