Current approaches for learning for planning have yet to achieve competitive performance against classical planners in several domains, and have poor overall performance. In this work, we construct novel graph representations of lifted planning tasks and use the WL algorithm to generate features from them. These features are used with classical machine learning methods which have up to 2 orders of magnitude fewer parameters and train up to 3 orders of magnitude faster than the state-of-the-art deep learning for planning models. Our novel approach, WL-GOOSE, reliably learns heuristics from scratch and outperforms the $h^{\text{FF}}$ heuristic in a fair competition setting. It also outperforms or ties with LAMA on 4 out of 10 domains on coverage and 7 out of 10 domains on plan quality. WL-GOOSE is the first learning for planning model which achieves these feats. Furthermore, we study the connections between our novel WL feature generation method, previous theoretically flavoured learning architectures, and Description Logic Features for planning.
Aligning machine learning systems with human expectations is mostly attempted by training with manually vetted human behavioral samples, typically explicit feedback. This is done on a population level since the context that is capturing the subjective Point-Of-View (POV) of a concrete person in a specific situational context is not retained in the data. However, we argue that alignment on an individual level can boost the subjective predictive performance for the individual user interacting with the system considerably. Since perception differs for each person, the same situation is observed differently. Consequently, the basis for decision making and the subsequent reasoning processes and observable reactions differ. We hypothesize that individual perception patterns can be used for improving the alignment on an individual level. We test this, by integrating perception information into machine learning systems and measuring their predictive performance wrt.~individual subjective assessments. For our empirical study, we collect a novel data set of multimodal stimuli and corresponding eye tracking sequences for the novel task of Perception-Guided Crossmodal Entailment and tackle it with our Perception-Guided Multimodal Transformer. Our findings suggest that exploiting individual perception signals for the machine learning of subjective human assessments provides a valuable cue for individual alignment. It does not only improve the overall predictive performance from the point-of-view of the individual user but might also contribute to steering AI systems towards every person's individual expectations and values.
Reinforcement learning (RL) presents a promising framework to learn policies through environment interaction, but often requires an infeasible amount of interaction data to solve complex tasks from sparse rewards. One direction includes augmenting RL with offline data demonstrating desired tasks, but past work often require a lot of high-quality demonstration data that is difficult to obtain, especially for domains such as robotics. Our approach consists of a reverse curriculum followed by a forward curriculum. Unique to our approach compared to past work is the ability to efficiently leverage more than one demonstration via a per-demonstration reverse curriculum generated via state resets. The result of our reverse curriculum is an initial policy that performs well on a narrow initial state distribution and helps overcome difficult exploration problems. A forward curriculum is then used to accelerate the training of the initial policy to perform well on the full initial state distribution of the task and improve demonstration and sample efficiency. We show how the combination of a reverse curriculum and forward curriculum in our method, RFCL, enables significant improvements in demonstration and sample efficiency compared against various state-of-the-art learning-from-demonstration baselines, even solving previously unsolvable tasks that require high precision and control.
Causal inference has gained much popularity in recent years, with interests ranging from academic, to industrial, to educational, and all in between. Concurrently, the study and usage of neural networks has also grown profoundly (albeit at a far faster rate). What we aim to do in this blog write-up is demonstrate a Neural Network causal inference architecture. We develop a fully connected neural network implementation of the popular Bayesian Causal Forest algorithm, a state of the art tree based method for estimating heterogeneous treatment effects. We compare our implementation to existing neural network causal inference methodologies, showing improvements in performance in simulation settings. We apply our method to a dataset examining the effect of stress on sleep.
Machine learning systems require representations of the real world for training and testing - they require data, and lots of it. Collecting data at scale has logistical and ethical challenges, and synthetic data promises a solution to these challenges. Instead of needing to collect photos of real people's faces to train a facial recognition system, a model creator could create and use photo-realistic, synthetic faces. The comparative ease of generating this synthetic data rather than relying on collecting data has made it a common practice. We present two key risks of using synthetic data in model development. First, we detail the high risk of false confidence when using synthetic data to increase dataset diversity and representation. We base this in the examination of a real world use-case of synthetic data, where synthetic datasets were generated for an evaluation of facial recognition technology. Second, we examine how using synthetic data risks circumventing consent for data usage. We illustrate this by considering the importance of consent to the U.S. Federal Trade Commission's regulation of data collection and affected models. Finally, we discuss how these two risks exemplify how synthetic data complicates existing governance and ethical practice; by decoupling data from those it impacts, synthetic data is prone to consolidating power away those most impacted by algorithmically-mediated harm.
This article presents a deep reinforcement learning-based approach to tackle a persistent surveillance mission requiring a single unmanned aerial vehicle initially stationed at a depot with fuel or time-of-flight constraints to repeatedly visit a set of targets with equal priority. Owing to the vehicle's fuel or time-of-flight constraints, the vehicle must be regularly refueled, or its battery must be recharged at the depot. The objective of the problem is to determine an optimal sequence of visits to the targets that minimizes the maximum time elapsed between successive visits to any target while ensuring that the vehicle never runs out of fuel or charge. We present a deep reinforcement learning algorithm to solve this problem and present the results of numerical experiments that corroborate the effectiveness of this approach in comparison with common-sense greedy heuristics.
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.