Messaging services allow new users to find existing contacts that already use that service through a process called contact discovery. Existing users are similarly informed of new users that are already on their contact list. This creates a privacy issue: when you join and enable contact discovery, anyone already on the service that has your number on their contact list gets notified that you joined. Even if you don't know that person, or if it is an ex or former colleague that you long parted with and whose contact details you deleted long ago. To solve this, we propose a mutual contact discovery protocol, that only allow users to discover each other when both are (still) in each other's contact list. Mutual contact discovery has the additional advantage that it can be implemented in a more privacy friendly fashion (e.g. protecting the social graph from the server) than traditional, one-sided contact discovery, without necessarily relying on trusted hardware.
Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.
Most existing federated learning algorithms are based on the vanilla FedAvg scheme. However, with the increase of data complexity and the number of model parameters, the amount of communication traffic and the number of iteration rounds for training such algorithms increases significantly, especially in non-independently and homogeneously distributed scenarios, where they do not achieve satisfactory performance. In this work, we propose FedND: federated learning with noise distillation. The main idea is to use knowledge distillation to optimize the model training process. In the client, we propose a self-distillation method to train the local model. In the server, we generate noisy samples for each client and use them to distill other clients. Finally, the global model is obtained by the aggregation of local models. Experimental results show that the algorithm achieves the best performance and is more communication-efficient than state-of-the-art methods.
Neural Algorithmic Reasoning is an emerging area of machine learning focusing on building models which can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory. We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRS Algorithmic Reasoning Benchmark and achieves new state-of-the-art results for several problems, including sorting, where we obtain significant improvements. Thus, learning without intermediate supervision is a promising direction for further research on neural reasoners.
A private cache-aided compression problem is studied, where a server has access to a database of $N$ files, $(Y_1,...,Y_N)$, each of size $F$ bits and is connected through a shared link to $K$ users, each equipped with a local cache of size $MF$ bits. In the placement phase, the server fills the users$'$ caches without knowing their demands, while the delivery phase takes place after the users send their demands to the server. We assume that each file $Y_i$ is arbitrarily correlated with a private attribute $X$, and an adversary is assumed to have access to the shared link. The users and the server have access to a shared key $W$. The goal is to design the cache contents and the delivered message $\cal C$ such that the average length of $\mathcal{C}$ is minimized, while satisfying: i. The response $\cal C$ does not reveal any information about $X$, i.e., $X$ and $\cal C$ are independent, which corresponds to the perfect privacy constraint; ii. User $i$ is able to decode its demand, $Y_{d_i}$, by using $\cal C$, its local cache $Z_i$, and the shared key $W$. Since the database is correlated with $X$, existing codes for cache-aided delivery do not satisfy the perfect privacy condition. Indeed, we propose a variable-length coding scheme that combines privacy-aware compression with coded caching techniques. In particular, we use two-part code construction and Functional Representation Lemma. Finally, we extend the results to the case, where $X$ and $\mathcal{C}$ can be correlated, i.e., non-zero leakage is allowed.
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.
The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.