亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning (DL) methods have been widely applied to anomaly-based network intrusion detection system (NIDS) to detect malicious traffic. To expand the usage scenarios of DL-based methods, federated learning (FL) allows multiple users to train a global model on the basis of respecting individual data privacy. However, it has not yet been systematically evaluated how robust FL-based NIDSs are against existing privacy attacks under existing defenses. To address this issue, we propose two privacy evaluation metrics designed for FL-based NIDSs, including (1) privacy score that evaluates the similarity between the original and recovered traffic features using reconstruction attacks, and (2) evasion rate against NIDSs using adversarial attack with the recovered traffic. We conduct experiments to illustrate that existing defenses provide little protection and the corresponding adversarial traffic can even evade the SOTA NIDS Kitsune. To defend against such attacks and build a more robust FL-based NIDS, we further propose FedDef, a novel optimization-based input perturbation defense strategy with theoretical guarantee. It achieves both high utility by minimizing the gradient distance and strong privacy protection by maximizing the input distance. We experimentally evaluate four existing defenses on four datasets and show that our defense outperforms all the baselines in terms of privacy protection with up to 7 times higher privacy score, while maintaining model accuracy loss within 3% under optimal parameter combination.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際(ji)網絡會議。 Publisher:IFIP。 SIT:

Unsupervised sentence representation learning aims to transform input sentences into fixed-length vectors enriched with intricate semantic information while obviating the reliance on labeled data. Recent progress within this field, propelled by contrastive learning and prompt engineering, has significantly bridged the gap between unsupervised and supervised strategies. Nonetheless, the potential utilization of Chain-of-Thought, remains largely untapped within this trajectory. To unlock latent capabilities within pre-trained models, such as BERT, we propose a two-stage approach for sentence representation: comprehension and summarization. Subsequently, the output of the latter phase is harnessed as the vectorized representation of the input sentence. For further performance enhancement, we meticulously refine both the contrastive learning loss function and the template denoising technique for prompt engineering. Rigorous experimentation substantiates our method, CoT-BERT, transcending a suite of robust baselines without necessitating other text representation models or external databases.

In computational pathology, multiple instance learning (MIL) is widely used to circumvent the computational impasse in giga-pixel whole slide image (WSI) analysis. It usually consists of two stages: patch-level feature extraction and slide-level aggregation. Recently, pretrained models or self-supervised learning have been used to extract patch features, but they suffer from low effectiveness or inefficiency due to overlooking the task-specific supervision provided by slide labels. Here we propose a weakly-supervised Label-Efficient WSI Screening method, dubbed LESS, for cytological WSI analysis with only slide-level labels, which can be effectively applied to small datasets. First, we suggest using variational positive-unlabeled (VPU) learning to uncover hidden labels of both benign and malignant patches. We provide appropriate supervision by using slide-level labels to improve the learning of patch-level features. Next, we take into account the sparse and random arrangement of cells in cytological WSIs. To address this, we propose a strategy to crop patches at multiple scales and utilize a cross-attention vision transformer (CrossViT) to combine information from different scales for WSI classification. The combination of our two steps achieves task-alignment, improving effectiveness and efficiency. We validate the proposed label-efficient method on a urine cytology WSI dataset encompassing 130 samples (13,000 patches) and FNAC 2019 dataset with 212 samples (21,200 patches). The experiment shows that the proposed LESS reaches 84.79%, 85.43%, 91.79% and 78.30% on a urine cytology WSI dataset, and 96.88%, 96.86%, 98.95%, 97.06% on FNAC 2019 dataset in terms of accuracy, AUC, sensitivity and specificity. It outperforms state-of-the-art MIL methods on pathology WSIs and realizes automatic cytological WSI cancer screening.

Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to provide clear reporting standards for ML-based science. Drawing from an extensive review of past literature, we present the REFORMS checklist ($\textbf{Re}$porting Standards $\textbf{For}$ $\textbf{M}$achine Learning Based $\textbf{S}$cience). It consists of 32 questions and a paired set of guidelines. REFORMS was developed based on a consensus of 19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS can serve as a resource for researchers when designing and implementing a study, for referees when reviewing papers, and for journals when enforcing standards for transparency and reproducibility.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司