亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents asymptotic results for the maximum likelihood and restricted maximum likelihood (REML) estimators within a two-way crossed mixed effect model as the sizes of the rows, columns, and cells tend to infinity. Under very mild conditions which do not require the assumption of normality, the estimators are proven to be asymptotically normal, possessing a structured covariance matrix. The growth rate for the number of rows, columns, and cells is unrestricted, whether considered pairwise or collectively.

相關內容

Stochastic Differential Equations (SDEs) serve as a powerful modeling tool in various scientific domains, including systems science, engineering, and ecological science. While the specific form of SDEs is typically known for a given problem, certain model parameters remain unknown. Efficiently inferring these unknown parameters based on observations of the state in discrete time series represents a vital practical subject. The challenge arises in nonlinear SDEs, where maximum likelihood estimation of parameters is generally unfeasible due to the absence of closed-form expressions for transition and stationary probability density functions of the states. In response to this limitation, we propose a novel two-step parameter inference mechanism. This approach involves a global-search phase followed by a local-refining procedure. The global-search phase is dedicated to identifying the domain of high-value likelihood functions, while the local-refining procedure is specifically designed to enhance the surrogate likelihood within this localized domain. Additionally, we present two simulation-based approximations for the transition density, aiming to efficiently or accurately approximate the likelihood function. Numerical examples illustrate the efficacy of our proposed methodology in achieving posterior parameter estimation.

Multifidelity models integrate data from multiple sources to produce a single approximator for the underlying process. Dense low-fidelity samples are used to reduce interpolation error, while sparse high-fidelity samples are used to compensate for bias or noise in the low-fidelity samples. Deep Gaussian processes (GPs) are attractive for multifidelity modelling as they are non-parametric, robust to overfitting, perform well for small datasets, and, critically, can capture nonlinear and input-dependent relationships between data of different fidelities. Many datasets naturally contain gradient data, especially when they are generated by computational models that are compatible with automatic differentiation or have adjoint solutions. Principally, this work extends deep GPs to incorporate gradient data. We demonstrate this method on an analytical test problem and a realistic partial differential equation problem, where we predict the aerodynamic coefficients of a hypersonic flight vehicle over a range of flight conditions and geometries. In both examples, the gradient-enhanced deep GP outperforms a gradient-enhanced linear GP model and their non-gradient-enhanced counterparts.

In this work, the high order accuracy and the well-balanced (WB) properties of some novel continuous interior penalty (CIP) stabilizations for the Shallow Water (SW) equations are investigated. The underlying arbitrary high order numerical framework is given by a Residual Distribution (RD)/continuous Galerkin (CG) finite element method (FEM) setting for the space discretization coupled with a Deferred Correction (DeC) time integration, to have a fully-explicit scheme. If, on the one hand, the introduced CIP stabilizations are all specifically designed to guarantee the exact preservation of the lake at rest steady state, on the other hand, some of them make use of general structures to tackle the preservation of general steady states, whose explicit analytical expression is not known. Several basis functions have been considered in the numerical experiments and, in all cases, the numerical results confirm the high order accuracy and the ability of the novel stabilizations to exactly preserve the lake at rest steady state and to capture small perturbations of such equilibrium. Moreover, some of them, based on the notions of space residual and global flux, have shown very good performances and superconvergences in the context of general steady solutions not known in closed-form. Many elements introduced here can be extended to other hyperbolic systems, e.g., to the Euler equations with gravity.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

Inverse problems are key issues in several scientific areas, including signal processing and medical imaging. Since inverse problems typically suffer from instability with respect to data perturbations, a variety of regularization techniques have been proposed. In particular, the use of filtered diagonal frame decompositions has proven to be effective and computationally efficient. However, existing convergence analysis applies only to linear filters and a few non-linear filters such as soft thresholding. In this paper, we analyze filtered diagonal frame decompositions with general non-linear filters. In particular, our results generalize SVD-based spectral filtering from linear to non-linear filters as a special case. As a first approach, we establish a connection between non-linear diagonal frame filtering and variational regularization, allowing us to use results from variational regularization to derive the convergence of non-linear spectral filtering. In the second approach, as our main theoretical results, we relax the assumptions involved in the variational case while still deriving convergence. Furthermore, we discuss connections between non-linear filtering and plug-and-play regularization and explore potential benefits of this relationship.

Digital credentials represent a cornerstone of digital identity on the Internet. To achieve privacy, certain functionalities in credentials should be implemented. One is selective disclosure, which allows users to disclose only the claims or attributes they want. This paper presents a novel approach to selective disclosure that combines Merkle hash trees and Boneh-Lynn-Shacham (BLS) signatures. Combining these approaches, we achieve selective disclosure of claims in a single credential and creation of a verifiable presentation containing selectively disclosed claims from multiple credentials signed by different parties. Besides selective disclosure, we enable issuing credentials signed by multiple issuers using this approach.

Numerical simulation of moving immersed solid bodies in fluids is now practiced routinely following pioneering work of Peskin and co-workers on immersed boundary method (IBM), Glowinski and co-workers on fictitious domain method (FDM), and others on related methods. A variety of variants of IBM and FDM approaches have been published, most of which rely on using a background mesh for the fluid equations and tracking the solid body using Lagrangian points. The key idea that is common to these methods is to assume that the entire fluid-solid domain is a fluid and then to constrain the fluid within the solid domain to move in accordance with the solid governing equations. The immersed solid body can be rigid or deforming. Thus, in all these methods the fluid domain is extended into the solid domain. In this review, we provide a mathemarical perspective of various immersed methods by recasting the governing equations in an extended domain form for the fluid. The solid equations are used to impose appropriate constraints on the fluid that is extended into the solid domain. This leads to extended domain constrained fluid-solid governing equations that provide a unified framework for various immersed body techniques. The unified constrained governing equations in the strong form are independent of the temporal or spatial discretization schemes. We show that particular choices of time stepping and spatial discretization lead to different techniques reported in literature ranging from freely moving rigid to elastic self-propelling bodies. These techniques have wide ranging applications including aquatic locomotion, underwater vehicles, car aerodynamics, and organ physiology (e.g. cardiac flow, esophageal transport, respiratory flows), wave energy convertors, among others. We conclude with comments on outstanding challenges and future directions.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.

This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.

北京阿比特科技有限公司