Product attribute value extraction is an important task in e-Commerce which can help several downstream applications such as product search and recommendation. Most previous models handle this task using sequence labeling or question answering method which rely on the sequential position information of values in the product text and are vulnerable to data discrepancy between training and testing. This limits their generalization ability to real-world scenario in which each product can have multiple descriptions across various shopping platforms with different composition of text and style. They also have limited zero-shot ability to new values. In this paper, we propose a multi-task learning model with value generation/classification and attribute prediction called JPAVE to predict values without the necessity of position information of values in the text. Furthermore, the copy mechanism in value generator and the value attention module in value classifier help our model address the data discrepancy issue by only focusing on the relevant part of input text and ignoring other information which causes the discrepancy issue such as sentence structure in the text. Besides, two variants of our model are designed for open-world and closed-world scenarios. In addition, copy mechanism introduced in the first variant based on value generation can improve its zero-shot ability for identifying unseen values. Experimental results on a public dataset demonstrate the superiority of our model compared with strong baselines and its generalization ability of predicting new values.
In Autonomous Driving (AD), real-time perception is a critical component responsible for detecting surrounding objects to ensure safe driving. While researchers have extensively explored the integrity of AD perception due to its safety and security implications, the aspect of availability (real-time performance) or latency has received limited attention. Existing works on latency-based attack have focused mainly on object detection, i.e., a component in camera-based AD perception, overlooking the entire camera-based AD perception, which hinders them to achieve effective system-level effects, such as vehicle crashes. In this paper, we propose SlowTrack, a novel framework for generating adversarial attacks to increase the execution time of camera-based AD perception. We propose a novel two-stage attack strategy along with the three new loss function designs. Our evaluation is conducted on four popular camera-based AD perception pipelines, and the results demonstrate that SlowTrack significantly outperforms existing latency-based attacks while maintaining comparable imperceptibility levels. Furthermore, we perform the evaluation on Baidu Apollo, an industry-grade full-stack AD system, and LGSVL, a production-grade AD simulator, with two scenarios to compare the system-level effects of SlowTrack and existing attacks. Our evaluation results show that the system-level effects can be significantly improved, i.e., the vehicle crash rate of SlowTrack is around 95% on average while existing works only have around 30%.
The objective of Active Learning is to strategically label a subset of the dataset to maximize performance within a predetermined labeling budget. In this study, we harness features acquired through self-supervised learning. We introduce a straightforward yet potent metric, Cluster Distance Difference, to identify diverse data. Subsequently, we introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data. Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%. Moreover, we assess the efficacy of our proposed framework under extended settings, encompassing both larger and smaller labeling budgets. Experimental results demonstrate that, when labeling 80% of the samples, the performance of the current SOTA method declines by 0.74%, whereas our proposed BAL achieves performance comparable to the full dataset. Codes are available at //github.com/JulietLJY/BAL.
This work presents and extends a known spigot-algorithm for computing square-roots, digit-by-digit, that is suitable for calculation by hand or an abacus, using only addition and subtraction. We offer an elementary proof of correctness for the original algorithm, then present a corresponding spigot-algorithm for computing cube-roots. Finally, we generalize the algorithm, so as to find $r$-th roots, and show how to optimize the algorithm for any $r$. The resulting algorithms require only integer addition and subtraction.
Model-based unsupervised learning, as any learning task, stalls as soon as missing data occurs. This is even more true when the missing data are informative, or said missing not at random (MNAR). In this paper, we propose model-based clustering algorithms designed to handle very general types of missing data, including MNAR data. To do so, we introduce a mixture model for different types of data (continuous, count, categorical and mixed) to jointly model the data distribution and the MNAR mechanism, remaining vigilant to the relative degrees of freedom of each. Several MNAR models are discussed, for which the cause of the missingness can depend on both the values of the missing variable themselves and on the class membership. However, we focus on a specific MNAR model, called MNARz, for which the missingness only depends on the class membership. We first underline its ease of estimation, by showing that the statistical inference can be carried out on the data matrix concatenated with the missing mask considering finally a standard MAR mechanism. Consequently, we propose to perform clustering using the Expectation Maximization algorithm, specially developed for this simplified reinterpretation. Finally, we assess the numerical performances of the proposed methods on synthetic data and on the real medical registry TraumaBase as well.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.