亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the $\textit{Clifford group}$, a subgroup inside the Clifford algebra whose definition we adjust to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional $n$-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 多峰值 · MoDELS · 有偏 · Learning ·
2023 年 11 月 28 日

Most existing debiasing methods for multimodal models, including causal intervention and inference methods, utilize approximate heuristics to represent the biases, such as shallow features from early stages of training or unimodal features for multimodal tasks like VQA, etc., which may not be accurate. In this paper, we study bias arising from confounders in a causal graph for multimodal data and examine a novel approach that leverages causally-motivated information minimization to learn the confounder representations. Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data. Hence, minimizing the information content of features obtained from a pretrained biased model helps learn the simplest predictive features that capture the underlying data distribution. We treat these features as confounder representations and use them via methods motivated by causal theory to remove bias from models. We find that the learned confounder representations indeed capture dataset biases, and the proposed debiasing methods improve out-of-distribution (OOD) performance on multiple multimodal datasets without sacrificing in-distribution performance. Additionally, we introduce a novel metric to quantify the sufficiency of spurious features in models' predictions that further demonstrates the effectiveness of our proposed methods. Our code is available at: //github.com/Vaidehi99/CausalInfoMin

The concept of the \textit{relative fractional packing number} between two graphs $G$ and $H$, initially introduced in arXiv:2307.06155 [math.CO], serves as an upper bound for the ratio of the zero-error Shannon capacity of these graphs. Defined as: \begin{equation*} \sup\limits_{W} \frac{\alpha(G \boxtimes W)}{\alpha(H \boxtimes W)} \end{equation*} where the supremum is computed over all arbitrary graphs and $\boxtimes$ denotes the strong product of graphs. This article delves into various critical theorems regarding the computation of this number. Specifically, we address its NP-hardness and the complexity of approximating it. Furthermore, we develop a conjecture for necessary and sufficient conditions for this number to be less than one. We also validate this conjecture for specific graph families. Additionally, we present miscellaneous concepts and introduce a generalized version of the independence number that gives insights that could significantly contribute to the study of the relative fractional packing number.

We propose a novel algorithm for data augmentation in nonlinear over-parametrized regression. Our data augmentation algorithm borrows from the literature on causality and extends the recently proposed Anchor regression (AR) method for data augmentation, which is in contrast to the current state-of-the-art domain-agnostic solutions that rely on the Mixup literature. Our Anchor Data Augmentation (ADA) uses several replicas of the modified samples in AR to provide more training examples, leading to more robust regression predictions. We apply ADA to linear and nonlinear regression problems using neural networks. ADA is competitive with state-of-the-art C-Mixup solutions.

Let $\Omega = [0,1]^d$ be the unit cube in $\mathbb{R}^d$. We study the problem of how efficiently, in terms of the number of parameters, deep neural networks with the ReLU activation function can approximate functions in the Sobolev spaces $W^s(L_q(\Omega))$ and Besov spaces $B^s_r(L_q(\Omega))$, with error measured in the $L_p(\Omega)$ norm. This problem is important when studying the application of neural networks in a variety of fields, including scientific computing and signal processing, and has previously been solved only when $p=q=\infty$. Our contribution is to provide a complete solution for all $1\leq p,q\leq \infty$ and $s > 0$ for which the corresponding Sobolev or Besov space compactly embeds into $L_p$. The key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse vectors. This enables us to obtain sharp upper bounds in the non-linear regime where $p > q$. We also provide a novel method for deriving $L_p$-approximation lower bounds based upon VC-dimension when $p < \infty$. Our results show that very deep ReLU networks significantly outperform classical methods of approximation in terms of the number of parameters, but that this comes at the cost of parameters which are not encodable.

Given a set system $\mathcal{X} = \{\mathcal{U},\mathcal{S}\}$, where $\mathcal{U}$ is a set of elements and $\mathcal{S}$ is a set of subsets of $\mathcal{U}$, an exact hitting set $\mathcal{U}'$ is a subset of $\mathcal{U}$ such that each subset in $\mathcal{S}$ contains exactly one element in $\mathcal{U}'$. We refer to a set system as exactly hittable if it has an exact hitting set. In this paper, we study interval graphs which have intersection models that are exactly hittable. We refer to these interval graphs as exactly hittable interval graphs (EHIG). We present a forbidden structure characterization for EHIG. We also show that the class of proper interval graphs is a strict subclass of EHIG. Finally, we give an algorithm that runs in polynomial time to recognize graphs belonging to the class of EHIG.

Linear regression is one of the most fundamental linear algebra problems. Given a dense matrix $A \in \mathbb{R}^{n \times d}$ and a vector $b$, the goal is to find $x'$ such that $ \| Ax' - b \|_2^2 \leq (1+\epsilon) \min_{x} \| A x - b \|_2^2 $. The best classical algorithm takes $O(nd) + \mathrm{poly}(d/\epsilon)$ time [Clarkson and Woodruff STOC 2013, Nelson and Nguyen FOCS 2013]. On the other hand, quantum linear regression algorithms can achieve exponential quantum speedups, as shown in [Wang Phys. Rev. A 96, 012335, Kerenidis and Prakash ITCS 2017, Chakraborty, Gily{\'e}n and Jeffery ICALP 2019]. However, the running times of these algorithms depend on some quantum linear algebra-related parameters, such as $\kappa(A)$, the condition number of $A$. In this work, we develop a quantum algorithm that runs in $\widetilde{O}(\epsilon^{-1}\sqrt{n}d^{1.5}) + \mathrm{poly}(d/\epsilon)$ time. It provides a quadratic quantum speedup in $n$ over the classical lower bound without any dependence on data-dependent parameters. In addition, we also show our result can be generalized to multiple regression and ridge linear regression.

A set of vectors $S \subseteq \mathbb{R}^d$ is $(k_1,\varepsilon)$-clusterable if there are $k_1$ balls of radius $\varepsilon$ that cover $S$. A set of vectors $S \subseteq \mathbb{R}^d$ is $(k_2,\delta)$-far from being clusterable if there are at least $k_2$ vectors in $S$, with all pairwise distances at least $\delta$. We propose a probabilistic algorithm to distinguish between these two cases. Our algorithm reaches a decision by only looking at the extreme values of a scalar valued hash function, defined by a random field, on $S$; hence, it is especially suitable in distributed and online settings. An important feature of our method is that the algorithm is oblivious to the number of vectors: in the online setting, for example, the algorithm stores only a constant number of scalars, which is independent of the stream length. We introduce random field hash functions, which are a key ingredient in our paradigm. Random field hash functions generalize locality-sensitive hashing (LSH). In addition to the LSH requirement that ``nearby vectors are hashed to similar values", our hash function also guarantees that the ``hash values are (nearly) independent random variables for distant vectors". We formulate necessary conditions for the kernels which define the random fields applied to our problem, as well as a measure of kernel optimality, for which we provide a bound. Then, we propose a method to construct kernels which approximate the optimal one.

We present {\lambda}ert, a type theory supporting refinement types with explicit proofs. Instead of solving refinement constraints with an SMT solver like DML and Liquid Haskell, our system requires and permits programmers to embed proofs of properties within the program text, letting us support a rich logic of properties including quantifiers and induction. We show that the type system is sound by showing that every refined program erases to a simply-typed program, and by means of a denotational semantics, we show that every erased program has all of the properties demanded by its refined type. All of our proofs are formalised in Lean 4.

Koopman representations aim to learn features of nonlinear dynamical systems (NLDS) which lead to linear dynamics in the latent space. Theoretically, such features can be used to simplify many problems in modeling and control of NLDS. In this work we study autoencoder formulations of this problem, and different ways they can be used to model dynamics, specifically for future state prediction over long horizons. We discover several limitations of predicting future states in the latent space and propose an inference-time mechanism, which we refer to as Periodic Reencoding, for faithfully capturing long term dynamics. We justify this method both analytically and empirically via experiments in low and high dimensional NLDS.

Estimation of quantum relative entropy and its R\'{e}nyi generalizations is a fundamental statistical task in quantum information theory, physics, and beyond. While several estimators of these divergences have been proposed in the literature along with their computational complexities explored, a limit distribution theory which characterizes the asymptotic fluctuations of the estimation error is still premature. As our main contribution, we characterize these asymptotic distributions in terms of Fr\'{e}chet derivatives of elementary operator-valued functions. We achieve this by leveraging an operator version of Taylor's theorem and identifying the regularity conditions needed. As an application of our results, we consider an estimator of quantum relative entropy based on generalized Pauli tomography of quantum states and show that the resulting asymptotic distribution is a centered normal, with its variance characterized in terms of the Pauli operators and states. We utilize the knowledge of the aforementioned limit distribution to obtain asymptotic performance guarantees for a multi-hypothesis testing problem.

北京阿比特科技有限公司