亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 線性的 · SimPLe · 泛函 · ·
2023 年 9 月 18 日

We propose a novel sensitivity analysis framework for linear estimands when identification failure can be viewed as seeing the wrong distribution of outcomes. Our family of assumptions bounds the density ratio between the observed and true conditional outcome distribution. This framework links naturally to selection models, generalizes existing assumptions for the Regression Discontinuity (RD) and Inverse Propensity Weighting (IPW) estimand, and provides a novel nonparametric perspective on violations of identification assumptions for ordinary least squares (OLS). Our sharp partial identification results extend existing results for IPW to cover other estimands and assumptions that allow even unbounded likelihood ratios, yielding a simple and unified characterization of bounds under assumptions like the c-dependence assumption of Masten and Poirier (2018). The sharp bounds can be written as a simple closed form moment of the data, the nuisance functions estimated in the primary analysis, and the conditional outcome quantile function. We find our method does well in simulations even when targeting a discontinuous and nearly infinite bound.

The present study proposes a novel method of trend detection and visualization - more specifically, modeling the change in a topic over time. Where current models used for the identification and visualization of trends only convey the popularity of a singular word based on stochastic counting of usage, the approach in the present study illustrates the popularity and direction that a topic is moving in. The direction in this case is a distinct subtopic within the selected corpus. Such trends are generated by modeling the movement of a topic by using k-means clustering and cosine similarity to group the distances between clusters over time. In a convergent scenario, it can be inferred that the topics as a whole are meshing (tokens between topics, becoming interchangeable). On the contrary, a divergent scenario would imply that each topics' respective tokens would not be found in the same context (the words are increasingly different to each other). The methodology was tested on a group of articles from various media houses present in the 20 Newsgroups dataset.

With the increasing penetration of machine learning applications in critical decision-making areas, calls for algorithmic fairness are more prominent. Although there have been various modalities to improve algorithmic fairness through learning with fairness constraints, their performance does not generalize well in the test set. A performance-promising fair algorithm with better generalizability is needed. This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability. Most previous reweighing methods propose to assign a unified weight for each (sub)group. Rather, our method granularly models the distance from the sample predictions to the decision boundary. Our adaptive reweighing method prioritizes samples closer to the decision boundary and assigns a higher weight to improve the generalizability of fair classifiers. Extensive experiments are performed to validate the generalizability of our adaptive priority reweighing method for accuracy and fairness measures (i.e., equal opportunity, equalized odds, and demographic parity) in tabular benchmarks. We also highlight the performance of our method in improving the fairness of language and vision models. The code is available at //github.com/che2198/APW.

This study introduces a novel training paradigm, audio difference learning, for improving audio captioning. The fundamental concept of the proposed learning method is to create a feature representation space that preserves the relationship between audio, enabling the generation of captions that detail intricate audio information. This method employs a reference audio along with the input audio, both of which are transformed into feature representations via a shared encoder. Captions are then generated from these differential features to describe their differences. Furthermore, a unique technique is proposed that involves mixing the input audio with additional audio, and using the additional audio as a reference. This results in the difference between the mixed audio and the reference audio reverting back to the original input audio. This allows the original input's caption to be used as the caption for their difference, eliminating the need for additional annotations for the differences. In the experiments using the Clotho and ESC50 datasets, the proposed method demonstrated an improvement in the SPIDEr score by 7% compared to conventional methods.

The analysis of structured complex data, such as clustered graph based datasets, usually applies a variety of visual representation techniques and formats. The majority of currently available tools and approaches to exploratory visualization are built on integrated schemes for simultaneous displaying of multiple aspects of studying objects and processes. Usually, such schemes partition screen space that is composed of multiple views and adopt interaction patterns to focus on data-driven items. Widely known concepts as overview plus-detail and focus-plus-context are ambiguous in interpretation by means of technical terms. Therefore, their implementation by UI design practitioners need reviews and a classification of the basic approaches to visual composition of graphical representation modules. We propose a description of basic components of the view and focus and an overview of their multiple combinations.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司