亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an efficient variational inference framework for deriving a family of structured gaussian process regression network (SGPRN) models. The key idea is to incorporate auxiliary inducing variables in latent functions and jointly treats both the distributions of the inducing variables and hyper-parameters as variational parameters. Then we propose structured variable distributions and marginalize latent variables, which enables the decomposability of a tractable variational lower bound and leads to stochastic optimization. Our inference approach is able to model data in which outputs do not share a common input set with a computational complexity independent of the size of the inputs and outputs and thus easily handle datasets with missing values. We illustrate the performance of our method on synthetic data and real datasets and show that our model generally provides better imputation results on missing data than the state-of-the-art. We also provide a visualization approach for time-varying correlation across outputs in electrocoticography data and those estimates provide insight to understand the neural population dynamics.

相關內容

We develop a new efficient methodology for Bayesian global sensitivity analysis for large-scale multivariate data. The focus is on computationally demanding models with correlated variables. A multivariate Gaussian process is used as a surrogate model to replace the expensive computer model. To improve the computational efficiency and performance of the model, compactly supported correlation functions are used. The goal is to generate sparse matrices, which give crucial advantages when dealing with large datasets, where we use cross-validation to determine the optimal degree of sparsity. This method was combined with a robust adaptive Metropolis algorithm coupled with a parallel implementation to speed up the convergence to the target distribution. The method was applied to a multivariate dataset from the IMPRESSIONS Integrated Assessment Platform (IAP2), an extension of the CLIMSAVE IAP, which has been widely applied in climate change impact, adaptation and vulnerability assessments. Our empirical results on synthetic and IAP2 data show that the proposed methods are efficient and accurate for global sensitivity analysis of complex models.

Physically-inspired latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems. They carry the structure of differential equations and the flexibility of Gaussian processes, yielding interpretable parameters and dynamics-imposed latent functions. However, the existing inference techniques associated with these models rely on the exact computation of posterior kernel terms which are seldom available in analytical form. Most applications relevant to practitioners, such as Hill equations or diffusion equations, are hence intractable. In this paper, we overcome these computational problems by proposing a variational solution to a general class of non-linear and parabolic partial differential equation latent force models. Further, we show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation. We demonstrate the efficacy and flexibility of our framework by achieving competitive performance on several tasks where the kernels are of varying degrees of tractability.

We introduce Stochastic Asymptotical Regularization (SAR) methods for the uncertainty quantification of the stable approximate solution of ill-posed linear-operator equations, which are deterministic models for numerous inverse problems in science and engineering. We prove the regularizing properties of SAR with regard to mean-square convergence. We also show that SAR is an optimal-order regularization method for linear ill-posed problems provided that the terminating time of SAR is chosen according to the smoothness of the solution. This result is proven for both a priori and a posteriori stopping rules under general range-type source conditions. Furthermore, some converse results of SAR are verified. Two iterative schemes are developed for the numerical realization of SAR, and the convergence analyses of these two numerical schemes are also provided. A toy example and a real-world problem of biosensor tomography are studied to show the accuracy and the advantages of SAR: compared with the conventional deterministic regularization approaches for deterministic inverse problems, SAR can provide the uncertainty quantification of the quantity of interest, which can in turn be used to reveal and explicate the hidden information about real-world problems, usually obscured by the incomplete mathematical modeling and the ascendence of complex-structured noise.

We study the two inference problems of detecting and recovering an isolated community of \emph{general} structure planted in a random graph. The detection problem is formalized as a hypothesis testing problem, where under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random graph $\mathcal{G}(n,q)$ with edge density $q\in(0,1)$; under the alternative, there is an unknown structure $\Gamma_k$ on $k$ nodes, planted in $\mathcal{G}(n,q)$, such that it appears as an \emph{induced subgraph}. In case of a successful detection, we are concerned with the task of recovering the corresponding structure. For these problems, we investigate the fundamental limits from both the statistical and computational perspectives. Specifically, we derive lower bounds for detecting/recovering the structure $\Gamma_k$ in terms of the parameters $(n,k,q)$, as well as certain properties of $\Gamma_k$, and exhibit computationally unbounded optimal algorithms that achieve these lower bounds. We also consider the problem of testing in polynomial-time. As is customary in many similar structured high-dimensional problems, our model undergoes an "easy-hard-impossible" phase transition and computational constraints can severely penalize the statistical performance. To provide an evidence for this phenomenon, we show that the class of low-degree polynomials algorithms match the statistical performance of the polynomial-time algorithms we develop.

The generalization capacity of various machine learning models exhibits different phenomena in the under- and over-parameterized regimes. In this paper, we focus on regression models such as feature regression and kernel regression and analyze a generalized weighted least-squares optimization method for computational learning and inversion with noisy data. The highlight of the proposed framework is that we allow weighting in both the parameter space and the data space. The weighting scheme encodes both a priori knowledge on the object to be learned and a strategy to weight the contribution of different data points in the loss function. Here, we characterize the impact of the weighting scheme on the generalization error of the learning method, where we derive explicit generalization errors for the random Fourier feature model in both the under- and over-parameterized regimes. For more general feature maps, error bounds are provided based on the singular values of the feature matrix. We demonstrate that appropriate weighting from prior knowledge can improve the generalization capability of the learned model.

We derive a posteriori error estimates for a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. The a posteriori bound is obtained by a splitting of the equation into a linear stochastic partial differential equation (SPDE) and a nonlinear random partial differential equation (RPDE). The resulting estimate is robust with respect to the interfacial width parameter and is computable since it involves the discrete principal eigenvalue of a linearized (stochastic) Cahn-Hilliard operator. Furthermore, the estimate is robust with respect to topological changes as well as the intensity of the stochastic noise. We provide numerical simulations to demonstrate the practicability of the proposed adaptive algorithm.

Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.

Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.

北京阿比特科技有限公司