亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider a sensor network consisting of both anchor and non-anchor nodes. We address the following sensor network localization (SNL) problem: given the physical locations of anchor nodes and relative measurements among all nodes, determine the locations of all non-anchor nodes. The solution to the SNL problem is challenging due to its inherent non-convexity. In this paper, the problem takes on the form of a multi-player non-convex potential game in which canonical duality theory is used to define a complementary dual potential function. After showing the Nash equilibrium (NE) correspondent to the SNL solution, we provide a necessary and sufficient condition for a stationary point to coincide with the NE. An algorithm is proposed to reach the NE and shown to have convergence rate $\mathcal{O}(1/\sqrt{k})$. With the aim of reducing the information exchange within a network, a distributed algorithm for NE seeking is implemented and its global convergence analysis is provided. Extensive simulations show the validity and effectiveness of the proposed approach to solve the SNL problem.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The typical phases of Bayesian network (BN) structured development include specification of purpose and scope, structure development, parameterisation and validation. Structure development is typically focused on qualitative issues and parameterisation quantitative issues, however there are qualitative and quantitative issues that arise in both phases. A common step that occurs after the initial structure has been developed is to perform a rough parameterisation that only captures and illustrates the intended qualitative behaviour of the model. This is done prior to a more rigorous parameterisation, ensuring that the structure is fit for purpose, as well as supporting later development and validation. In our collective experience and in discussions with other modellers, this step is an important part of the development process, but is under-reported in the literature. Since the practice focuses on qualitative issues, despite being quantitative in nature, we call this step qualitative parameterisation and provide an outline of its role in the BN development process.

Unsupervised source separation involves unraveling an unknown set of source signals recorded through a mixing operator, with limited prior knowledge about the sources, and only access to a dataset of signal mixtures. This problem is inherently ill-posed and is further challenged by the variety of timescales exhibited by sources. Existing methods typically rely on a preselected window size that determines their operating timescale, limiting their capacity to handle multi-scale sources. To address this issue, we propose an unsupervised multi-scale clustering and source separation framework by leveraging wavelet scattering spectra that provide a low-dimensional representation of stochastic processes, capable of distinguishing between different non-Gaussian stochastic processes. Nested within this representation space, we develop a factorial Gaussian-mixture variational autoencoder that is trained to (1) probabilistically cluster sources at different timescales and (2) independently sample scattering spectra representations associated with each cluster. As the final stage, using samples from each cluster as prior information, we formulate source separation as an optimization problem in the wavelet scattering spectra representation space, aiming to separate sources in the time domain. When applied to the entire seismic dataset recorded during the NASA InSight mission on Mars, containing sources varying greatly in timescale, our multi-scale nested approach proves to be a powerful tool for disentangling such different sources, e.g., minute-long transient one-sided pulses (known as ``glitches'') and structured ambient noises resulting from atmospheric activities that typically last for tens of minutes. These results provide an opportunity to conduct further investigations into the isolated sources related to atmospheric-surface interactions, thermal relaxations, and other complex phenomena.

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the optimisation-based domain decomposition approach, we derive an optimal control problem, for which we present a convergence analysis in the case of non-stationary incompressible Navier-Stokes equations. We discretize the problem with the finite element method and we compare different model order reduction techniques: POD-Galerkin and a non-intrusive neural network procedure. We show that the classical POD-Galerkin is more robust and accurate also in transient areas, while the neural network can obtain simulations very quickly though being less precise in the presence of discontinuities in time or parameter domain. We test the proposed methodologies on two fluid dynamics benchmarks with physical parameters and time dependency: the non-stationary backward-facing step and lid-driven cavity flow.

In cluster-randomized trials (CRTs), missing data can occur in various ways, including missing values in outcomes and baseline covariates at the individual or cluster level, or completely missing information for non-participants. Among the various types of missing data in CRTs, missing outcomes have attracted the most attention. However, no existing methods can simultaneously address all aforementioned types of missing data in CRTs. To fill in this gap, we propose a new doubly-robust estimator for the average treatment effect on a variety of scales. The proposed estimator simultaneously handles missing outcomes under missingness at random, missing covariates without constraining the missingness mechanism, and missing cluster-population sizes via a uniform sampling mechanism. Furthermore, we detail key considerations to improve precision by specifying the optimal weights, leveraging machine learning, and modeling the treatment assignment mechanism. Finally, to evaluate the impact of violating missing data assumptions, we contribute a new sensitivity analysis framework tailored to CRTs. Simulation studies and a real data application both demonstrate that our proposed methods are effective in handling missing data in CRTs and superior to the existing methods.

Zero-shot cross-lingual generation implies finetuning of the multilingual pretrained language model on a generation task in one language and then using it to make predictions for this task in other languages. Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model. In this work we compare various approaches proposed from the literature in unified settings, also including alternative backbone models, namely mBART and NLLB-200. We first underline the importance of tuning learning rate used for finetuning, which helps to substantially alleviate the problem of generation in the wrong language. Then, we show that with careful learning rate tuning, the simple full finetuning of the model acts as a very strong baseline and alternative approaches bring only marginal improvements. Finally, we find that mBART performs similarly to mT5 of the same size, and NLLB-200 can be competitive in some cases. Our final models reach the performance of the approach based on data translation which is usually considered as an upper baseline for zero-shot cross-lingual generation.

Many networks can be characterised by the presence of communities, which are groups of units that are closely linked. Identifying these communities can be crucial for understanding the system's overall function. Recently, hypergraphs have emerged as a fundamental tool for modelling systems where interactions are not limited to pairs but may involve an arbitrary number of nodes. In this study, we adopt a dual approach to community detection and extend the concept of link communities to hypergraphs. This extension allows us to extract informative clusters of highly related hyperedges. We analyze the dendrograms obtained by applying hierarchical clustering to distance matrices among hyperedges across a variety of real-world data, showing that hyperlink communities naturally highlight the hierarchical and multiscale structure of higher-order networks. Moreover, hyperlink communities enable us to extract overlapping memberships from nodes, overcoming limitations of traditional hard clustering methods. Finally, we introduce higher-order network cartography as a practical tool for categorizing nodes into different structural roles based on their interaction patterns and community participation. This approach aids in identifying different types of individuals in a variety of real-world social systems. Our work contributes to a better understanding of the structural organization of real-world higher-order systems.

We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly log-concave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.

The increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications. In high-stakes and knowledge-intensive tasks, understanding model vulnerabilities is essential for quantifying the trustworthiness of model predictions and regulating their use. The recent discovery of named entities as adversarial examples in natural language processing tasks raises questions about their potential guises in other settings. Here, we propose a powerscaled distance-weighted sampling scheme in embedding space to discover diverse adversarial entities as distractors. We demonstrate its advantage over random sampling in adversarial question answering on biomedical topics. Our approach enables the exploration of different regions on the attack surface, which reveals two regimes of adversarial entities that markedly differ in their characteristics. Moreover, we show that the attacks successfully manipulate token-wise Shapley value explanations, which become deceptive in the adversarial setting. Our investigations illustrate the brittleness of domain knowledge in LLMs and reveal a shortcoming of standard evaluations for high-capacity models.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司